
The Scholar Machine Failing: How Systems Acquisition and Software Development Flaws Contribute to Military Accidents

9 10

How does software contribute to military accidents? The stakes are
high. During the Cold War, computerized early warning systems produced
“near-miss” nuclear crises. In the future, military AI applications could
fail with devastating consequences. To illuminate the causes of military
accidents, existing studies apply “normal accidents” and “high reliability
organizations” theories. While these frameworks are helpful, they neglect
the military’s system acquisition process, which often outsources software
development to contractors and limits input from military end-users. By
contrast, the software development lifecycle theory expands the causal
timeline of accidents beyond decisions made on the battlefield to those
made decades earlier in software design, serving as an antecedent account
of how software contributes to military accidents. Illuminating dynamics
overlooked by the two dominant approaches, this theory is supported
by four cases: the 1988 USS Vincennes shootdown of an Iranian airliner;
the 2003 Patriot fratricides; the 2017 USS McCain collision; and software
upgrades in the 2021 Kabul airlift.

1 T. Christian Miller, Megan Rose, Robert Faturechi, and Agnes Chang, “The Navy Installed Touch-Screen Steering Systems to Save Money. Ten
Sailors Paid with Their Lives,” ProPublica, December 20, 2019, https://features.propublica.org/navy-uss-mccain-crash/navy-installed-touch-screen-
steering-ten-sailors-paid-with-their-lives/.

2 U.S. Fleet Forces Command, “Comprehensive Review of Recent Surface Forces Incidents,” Department of the Navy, October 26, 2017, https://
news.usni.org/2017/11/02/document-navy-comprehensive-review-surface-forces.

3 Daniel Yergin, “The World’s Most Important Body of Water,” The Atlantic, December 15, 2020, https://www.theatlantic.com/internation-
al/archive/2020/12/south-china-sea-us-ghosts-strategic-tensions/617380/. On debates over whether conflicts can be “accidental,” see Dan
Reiter, “Exploding the Powder Keg Myth: Preemptive Wars Almost Never Happen,” International Security 20, no. 2 (1995): 5–34, https://doi.
org/10.2307/2539227; Andrew A. Szarejko, “Do Accidental Wars Happen? Evidence from America’s Indian Wars,” Journal of Global Security Studies
6, no. 4 (December 1, 2021), https://doi.org/10.1093/jogss/ogaa030.

4 Paul Scharre, Army of None: Autonomous Weapons and the Future of War (New York: W.W. Norton & Company, 2018); Paul Scharre, “Debunking
the AI Arms Race Theory,” Texas National Security Review 4, no. 3 (Summer 2021): 121–32; Michael C. Horowitz, Paul Scharre, and Alexander Velez-
Green, “A Stable Nuclear Future? The Impact of Autonomous Systems and Artificial Intelligence,” arXiv:1912.05291 [Cs], December 13, 2019, http://
arxiv.org/abs/1912.05291.

On Aug. 21, 2017, the USS John McCain crashed
into an oil tanker near the Strait of Malac-
ca, resulting in the death of 10 sailors and
marking the Navy’s worst accident in four

decades. While the Navy initially blamed the incident
on the McCain’s crew, later investigations pointed out
problems with the ship’s navigation software.1 In fact,
the Navy’s own review of the crash stated, “There is
a tendency of designers to add automation … without
considering the effect to operators who are trained
and proficient in operating legacy equipment.”2

Safety-critical software systems come with high
stakes. At present, maritime forces rely on navigation

software like the one used on the McCain, and an
accident at sea could be one of the most likely trig-
gers of a military conflict between the United States
and China.3 During the Cold War, accidents involv-
ing computerized early warning systems produced
numerous “near-miss” nuclear crises. In the future,
military systems that incorporate new advances in
AI and other emerging technologies could also fail,
bringing devastating consequences.4

How does software contribute to the risk of military
accidents? Existing scholarship on the safety risks
of military technology systems draws on debates
between normal accidents theory and high relia-

Machine Failing: How Systems

Acquisition and Software Development

 Flaws Contribute to Military Accidents

Jeffrey Ding

The Scholar Machine Failing: How Systems Acquisition and Software Development Flaws Contribute to Military Accidents

11 12

as an illustration, the failure of a Patriot missile de-
fense system to intercept a Scud missile that struck
a U.S. barracks at Dhahran, Saudi Arabia, in the last
days of the Gulf War. The missile’s impact caused the
deaths of 28 soldiers, more than one-third of all U.S.
servicemembers killed in the war.11 Army investigators
attributed the breakdown to a timing error in the
computer software designed by Raytheon. Long, con-
tinuous operation led to loss of precision in tracking
incoming missiles. Crucially, technical specialists were
aware of the issue and had even developed a software
patch, but the upgrade was not prioritized because
they discounted the possibility that operators would
keep the computer running for long periods without
a reboot.12 The accident was not “normal” — despite
tight coupling and complexity, the cause was well
understood, and a fix was available. Nor
could it have been prevented by the Army
improving its organizational culture and
structure. The computer malfunction was
a product of a considerable disconnect
between Army users and software contrac-
tors in the Patriot’s development process.

This theory is supported with four case
studies: the 1988 Vincennes incident, in
which a U.S. naval ship accidentally shot
down an Iran Air civilian airliner; the 2003
Patriot fratricides at the beginning of the
U.S. war in Iraq; the 2017 USS McCain collision; and
software performance in the 2021 Kabul evacuation.
In each case, the choices about software develop-
ment by senior procurement officials and defense
contractors were central to how software contributed
to accident risks. This is not to say that human error
played no part; rather, the way in which these military
systems were developed set end-users up to fail.

This article makes two main contributions. First,
scholarship on military accidents has been preoccu-
pied with the clash between the normal accidents and
high reliability organization frameworks. Since Scott
Sagan’s formative application of these frameworks
to nuclear command and control accidents, this lit-

11 J.C. Humphrey, “Casualty Management: Scud Missile Attack, Dhahran, Saudi Arabia,” Military Medicine 154, no. 5 (May 1999): 322–26, https://
pubmed.ncbi.nlm.nih.gov/10332169/.

12 U.S. General Accounting Office, “Patriot Missile Defense: Software Problem Led to System Failure at Dhahran, Saudi Arabia,” February 1992,
https://apps.dtic.mil/sti/citations/ADA344865. For more on Patriot malfunctions in the Gulf War, see Theodore A. Postol, “Lessons of the Gulf War
Experience with Patriot,” International Security 16, no. 3 (1991): 119–71, https://doi.org/10.2307/2539090.

13 Sagan, The Limits of Safety; Eric Schlosser, Command and Control: Nuclear Weapons, the Damascus Accident, and the Illusion of Safety (New
York: Penguin, 2009).

14 Nancy Leveson, Nicolas Dulac, Karen Marais, and John Carroll, “Moving Beyond Normal Accidents and High Reliability Organiza-
tions: A Systems Approach to Safety in Complex Systems,” Organization Studies 30, no. 2–3 (February 1, 2009): 227–49, https://doi.
org/10.1177/0170840608101478.

15 Nina A. Kollars, “War’s Horizon: Soldier-Led Adaptation in Iraq and Vietnam,” Journal of Strategic Studies 38, no. 4 (June 7, 2015): 529–53,
https://doi.org/10.1080/01402390.2014.971947; Julia Macdonald and Jacquelyn Schneider, “Battlefield Responses to New Technologies: Views from
the Ground on Unmanned Aircraft,” Security Studies 28, no. 2 (March 15, 2019): 216–49, https://doi.org/10.1080/09636412.2019.1551565.

16 Vincent Boulanin et al., “Artificial Intelligence, Strategic Stability and Nuclear Risk,” SIPRI, June 2020, https://www.sipri.org/publica-
tions/2020/policy-reports/artificial-intelligence-strategic-stability-and-nuclear-risk; Horowitz, Scharre, and Velez-Green, “A Stable Nuclear Future?”

17 Horowitz, “When Speed Kills.”

erature has seen very few theoretical innovations.13
Departing from the normal accidents/high reliability
organization dichotomy, this article presents a novel
approach to exploring the sources and limits of safety
in military technology systems. In doing so, it connects
political science scholarship to a shift in the systems
engineering, human-computer interaction, and risk
management fields, all of which increasingly empha-
size the need for “moving beyond normal accidents
and high reliability organizations.”14 By focusing on
participation by end-users in software development,
software development lifecycle theory builds on recent
scholarship on the military adoption of automated
technologies, which underlines the significance of
tactical-level operators’ trust in new innovations.15

Second, this article has direct implications for the
risks of emerging technologies such as AI. In recent
years, leading scholars and policymakers have likened
the safety hazards of autonomous military systems
to the Cold War’s nuclear close calls, many of which
were linked to false alarms produced by technolog-
ical systems.16 For example, Michael C. Horowitz, a
University of Pennsylvania professor who serves as
the director of the Department of Defense’s Office
of Emerging Capabilities Policy, reexamined the Cu-
ban Missile Crisis with autonomous naval ships in
the mix, giving significant attention to the accident
risks of uncontrollable systems.17 These analyses
appropriately highlight specific features of AI-ena-

bility organizations theory.5 The normal accidents
approach argues that the causes of accidents in highly
complex and tightly coupled technological systems
are deeply embedded in the systems themselves.
Tightly coupled systems require centralized author-
ity because small mishaps can rapidly escalate into
major disasters, but problems in complex systems
demand responses by local decision-makers who
understand how the system works. The tension be-
tween these two imperatives results in unavoidable
accidents.6 Under normal accidents theory, accidents
are inevitable in software-intensive military systems
because they are very complex and tightly coupled.
For instance, one expert on AI governance predicts
that normal accident problems will be “particularly
acute in military AI applications.”7

The high reliability organizations literature, in con-
trast, posits that certain organizations can effectively
manage the risks of hazardous technologies. Studies
in this tradition emphasize the importance of organ-
izational culture, such as deference to expertise and
dedication to learning from failures, as well as flexi-
ble organizational structures that permit authority
to be centralized and decentralized depending on
the situation.8 As evidenced by studies of the U.S.
Navy’s nuclear aircraft carrier community and subma-
rine community, certain military organizations have
demonstrated excellent safety records with complex,
interdependent technology systems.9 Scholars have
proposed the high reliability organizations model as
a way to manage the risks of autonomous weapons.10

5 The seminal text on this subject is Scott D. Sagan, The Limits of Safety (Princeton: Princeton University Press, 1993), https://press.princeton.edu/
books/paperback/9780691021010/the-limits-of-safety. See Scott D. Sagan, “Rules of Engagement,” Security Studies 1, no. 1 (September 1, 1991): 78–108,
https://doi.org/10.1080/09636419109347458; Bart Van Bezooijen and Eric-Hans Kramer, “Mission Command in the Information Age: A Normal Accidents
Perspective on Networked Military Operations,” Journal of Strategic Studies 38, no. 4 (June 7, 2015): 445–66, https://doi.org/10.1080/01402390.2013.844
127; Scharre, Army of None; Scott A. Snook, Friendly Fire: The Accidental Shootdown of U.S. Black Hawks over Northern Iraq (Princeton: Princeton Universi-
ty Press, 2000). On the organizational politics of accidents in autonomous weapons and cyberspace, see Avi Goldfarb and Jon R. Lindsay, “Prediction and
Judgment: Why Artificial Intelligence Increases the Importance of Humans in War,” International Security 46, no. 3 (February 25, 2022): 7–50, https://doi.
org/10.1162/isec_a_00425; Michael C. Horowitz, “When Speed Kills: Lethal Autonomous Weapon Systems, Deterrence and Stability,” Journal of Strategic
Studies 42, no. 6 (September 19, 2019): 764–88, https://doi.org/10.1080/01402390.2019.1621174; Michael C. Horowitz et al., “Policy Roundtable: Artificial
Intelligence and International Security,” Texas National Security Review, June 2, 2020, https://tnsr.org/roundtable/policy-roundtable-artificial-intelli-
gence-and-international-security/; Jon R. Lindsay, “Stuxnet and the Limits of Cyber Warfare,” Security Studies 22, no. 3 (July 1, 2013): 393–94, https://doi.
org/10.1080/09636412.2013.816122; Paul Scharre, “Autonomous Weapons and Operational Risk,” Center for a New American Security, 2016; Jacquelyn
Schneider and Julia Macdonald, “Looking Back to Look Forward: Autonomous Systems, Military Revolutions, and the Importance of Cost,” Journal of
Strategic Studies 47, no. 2 (January 24, 2023): 1–23, https://doi.org/10.1080/01402390.2022.2164570. On other contextual factors that shape the risks
of accidents, see Ingvild Bode, “Practice-Based and Public-Deliberative Normativity: Retaining Human Control over the Use of Force,” European Journal
of International Relations, April 10, 2023, https://doi.org/10.1177/13540661231163392; Patricia Owens, “Accidents Don’t Just Happen: The Liberal Politics
of High-Technology ‘Humanitarian’ War,” Millennium 32, no. 3 (December 1, 2003): 595–616, https://doi.org/10.1177/03058298030320031101; Rebecca
Slayton, “The Fallacy of Proven and Adaptable Defenses,” Public Interest Report, Federation of American Scientists, 2014.

6 Charles Perrow, Normal Accidents: Living with High Risk Technologies (New York: Basic Books, 1984); Sagan, The Limits of Safety.

7 Matthijs M. Maas, “Regulating for ‘Normal AI Accidents’: Operational Lessons for the Responsible Governance of Artificial Intelligence Deploy-
ment,” in Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, 2018, 223–28; John Borrie, “Safety, Unintentional Risk and Acci-
dents in the Weaponization of Increasingly Autonomous Technologies,” UNIDIR Resources 5 (2016); Scharre, “Autonomous Weapons and Operational
Risk”; Horowitz, “When Speed Kills”; Horowitz, Scharre, and Velez-Green, “A Stable Nuclear Future?”

8 Todd R. LaPorte and Paula M. Consolini, “Working in Practice But Not in Theory: Theoretical Challenges of ‘High-Reliability Organizations’,” Jour-
nal of Public Administration Research and Theory 1, no. 1 (January 1, 1991): 19–48, https://doi.org/10.1093/oxfordjournals.jpart.a037070; Andrew
Hopkins, “The Limits of Normal Accident Theory,” Safety Science 32, no. 2 (1999): 93–102.

9 Karlene H. Roberts, Denise M. Rousseau, and Todd R. La Porte, “The Culture of High Reliability: Quantitative and Qualitative Assessment
Aboard Nuclear-Powered Aircraft Carriers,” The Journal of High Technology Management Research 5, no. 1 (1994): 141–61; Scharre, “Autonomous
Weapons and Operational Risk.”

10 Thomas G. Dietterich, “Robust Artificial Intelligence and Robust Human Organizations,” Frontiers of Computer Science: Selected Publications
from Chinese Universities 13, no. 1 (February 1, 2019): 1–3, https://doi.org/10.1007/s11704-018-8900-4; Scharre, “Autonomous Weapons and Opera-
tional Risk,” 51.

To be sure, these two approaches have produced
valuable insights on the causes of military accidents.
Yet, the applications of normal accident and high
reliability organizations theories to software-inten-
sive military systems share a drawback: their scope
of analysis is confined to the actions of military or-
ganizations only after software systems have been
fielded. This means that they neglect the initial phase
of software acquisition and development — when
critical safety decisions are made. It also means that
the existing literature does not account for the ac-
tivities of the defense contractors that develop most
of the military software.

Taken together, these considerations point to the
importance of the military’s software acquisition
process. If this process limits feedback from mili-
tary operators to end-stage testing and evaluation
(e.g., linear “waterfall” models), when it is too late
to change fundamental system designs, accidents
are more likely. These acquisition pathways often
yield confusing human-machine interfaces and limit
adaptability to hidden vulnerabilities that emerge
from operators using the system in the field. In this
article, I propose software development lifecycle
theory as an alternative way to explain how software
contributes to military accidents.

By focusing on patterns of software procurement
and development, software development lifecycle
theory sheds light on causal factors that affect military
accidents often overlooked by the normal accident and
high reliability organizations perspectives. Consider,

While AI will bring novel risks,
learning from past software-

intensive military systems
should serve as a foundation

for comprehending the risks of
military AI applications.

The Scholar Machine Failing: How Systems Acquisition and Software Development Flaws Contribute to Military Accidents

13 14

bled military applications, such as enhanced levels
of autonomy, but they gloss over the simple fact that
these applications will be implemented as software
programs.18 While AI will bring novel risks, learning
from past software-intensive military systems should
serve as a foundation for comprehending the risks
of military AI applications.

The article proceeds as follows. It first outlines my
argument about how software development practices
influence the risk of military accidents. Next, the article
explains the empirical method by distilling each of
the three theories’ expectations about the impact of
software technology on military safety. Evaluations
of the Vincennes, Patriot, and McCain cases trace the
sources of these accidents back to the initial software
requirements phase and the weak ties between soft-
ware developers and military operators. In addition,
evidence from the Afghanistan evacuation’s use of
Kessel Run19 software further supports my theory by
showing that an iterative approach to software devel-
opment can reduce safety risks. The article concludes
by discussing broader implications and policy recom-
mendations, including defense software acquisition
reforms that shift away from waterfall models and
toward more agile approaches.

Software Development Lifecycle

How does software affect military accidents? Typ-
ically, a software failure is defined as the inability
of code to meet performance requirements. When
post-accident investigations assign blame to the crew
by noting that software systems performed flawless-
ly — as was the case with the Navy’s report on the
McCain crash — they rely on this narrow definition
of software failure. In contrast, the normal accidents
and high reliability theories emphasize that software
can contribute to accidents, even when it performs
how it is supposed to, by influencing the connected

18 One exception is Schneider and Macdonald, “Looking Back to Look Forward,” which discusses the impact of different acquisition strategies on
managing the risks of autonomous systems, including operational trade-offs between control/safety and cost.

19 Kessel Run is a U.S. Air Force organization that develops command and control and targeting software capabilities. See https://kesselrun.af.mil.

20 Veronica L. Foreman, Francesca M. Favaró, Joseph H. Saleh, and Christopher W. Johnson, “Software in Military Aviation and Drone Mis-
haps: Analysis and Recommendations for the Investigation Process,” Reliability Engineering & System Safety 137 (May 1, 2015): 102, https://
doi.org/10.1016/j.ress.2015.01.006; Scott Shappell and Douglas Wiegmann, “The Human Factors Analysis and Classification System—HFACS,”
Embry-Riddle Aeronautics University Publications, February 1, 2000, https://commons.erau.edu/publication/737. The human factors analysis and
classification system, used by the U.S. military for aviation accident investigations, also considers human errors as a product of broader organiza-
tional influences. I thank an anonymous reviewer for raising this point.

21 Perrow, Normal Accidents; Sagan, The Limits of Safety.

22 Another coincidence that no one could have reasonably predicted was that the last block of sequential numbers on messages coming into the mul-
tiplexor of the system computer (the 427M) had been “001” and the first block of numbers in the mistakenly inserted training data was “002.” Aerospace
Defense Command, “History of ADCOM/ADC, 1 January–31 December 1979,” n.d., Secret, excerpts, excised copy January 1, 1980, newly declassified.

23 LaPorte and Consolini, “Working in Practice but Not in Theory.”

24 Roberts, Rousseau, and La Porte, “The Culture of High Reliability”; Scharre, “Autonomous Weapons and Operational Risk.”

25 Leveson et al., “Moving Beyond Normal Accidents and High Reliability Organizations,” 228. For a similar argument in a very different policy
area, see Susanna P. Campbell, Global Governance and Local Peace: Accountability and Performance in International Peacebuilding (Cambridge:
Cambridge University Press, 2018), https://doi.org/10.1017/9781108290630.

structures and organizations tasked with manag-
ing hazardous technologies.20 These two prevailing
organizational theories of safety in technological
systems, therefore, offer a broader conception of
software failure in military accidents.

The first approach contends that normal accidents
occur in software-intensive military systems due
to tightly coupled and highly complex structural
elements. When problems — even seemingly trivial
ones — arise in systems in which many events hap-
pen simultaneously and interact with each other, it
is difficult for managers and operators to identify
fixes.21 Even if software works as coded, novel and
unexpected interactions between battlefield condi-
tions and such systems can snowball into unavoidable
crises. For instance, in a 1979 false alert involving
missile warning computers, the United States initi-
ated retaliation measures based on mistaken reports
of a major Soviet nuclear attack. This “near-miss”
was produced by coincidences that would have been
difficult to reasonably predict, including the insertion
of training tape data at the same time as a momentary
circuit failure in a ground station.22

The second approach, rooted in high reliability or-
ganizations, also posits that accidents in software-in-
tensive military systems are rooted in the organiza-
tional structures that manage these systems. High
reliability organization scholars claim that certain
organizations can reliably prevent system accidents
if they maintain certain qualities, such as deference
to experienced operators, devotion to learning from
failures, and commitment to safety.23 Studies of the
U.S. nuclear Navy, for instance, have highlighted the
experience level of operators and cultural commit-
ments to safety.24 Notably, the autonomy of experi-
enced front-line operators to “circumvent” certain
bureaucratic procedures is one way high reliability
organizations maintain system safety.25

While these two schools of thought are helpful for
understanding how software affects military acci-

dents, their focus is on unpredictable interactions or
operator inadequacies that trip up software systems
after they are in operation. Less attention is paid
to the system acquisition and development phases
before militaries even field these technologies. Yet,
software safety specialists have identified that the
bulk of safety-critical decisions are made during the
initial phase of software design and requirements
specification. Based on one study of military aviation
mishaps, the concept development step accounts
for 70 to 90 percent of safety-relevant decisions.26

Without accounting for military software acquisi-
tion and development, any explanation of accidents
in software-intensive military systems is incomplete.
In these early stages of system design, heavy reliance
on contractors entails additional communication
steps between software programmers and operators
of deployed systems. Drawing on Nancy Leveson’s
seminal work on software-linked accidents, one re-
view of decades of research on this subject concludes,
“The source of most serious problems with soft-
ware relates to outsourcing software development.”27
Regarding military accidents, the strength of these
feedback channels between operators and software
developers is crucial because they link military and
civilian organizations that adhere to very different
standards on system performance and reliability.

This third approach, which I call software devel-
opment lifecycle theory, highlights the impact of
software acquisition patterns on the development
of accident-prone systems. Military software devel-

26 Nancy G. Leveson, Engineering a Safer World (Cambridge, MA: The MIT Press, 2012), 51; F.R. Frola and C.O. Miller, “System Safety in Aircraft
Acquisition” (Washington, DC: Logistics Management Institute, January 1984).

27 Roel I.J. Dobbe, “System Safety and Artificial Intelligence,” in The Oxford Handbook of AI Governance, ed. Justin B. Bullock et al. (Oxford:
Oxford University Press, 2022), https://doi.org/10.1093/oxfordhb/9780197579329.013.67. Spanning engineering, risk assessment, and science and
technology studies, scholars from a wide range of disciplines have studied how to safeguard software-based systems over the past few decades.
See also Madeleine Clare Elish, “Moral Crumple Zones: Cautionary Tales in Human-Robot Interaction,” Engaging Science, Technology, and Society 5
(March 23, 2019): 40–60, https://doi.org/10.17351/ests2019.260.

28 John K. Hawley, “Patriot Wars: Automation and the Patriot Air and Missile Defense System,” Center for a New American Security, January 25,
2017, https://www.cnas.org/publications/reports/patriot-wars. See also Scharre, “Debunking the AI Arms Race Theory.”

29 National Research Council, Achieving Effective Acquisition of Information Technology in the Department of Defense (Washington, DC: Nation-
al Academies Press, 2010), https://doi.org/10.17226/12823. Related to the waterfall model, the DOD has historically relied on block development,
in which each development phase is completed once according to unchanging software requirements established at the outset (cf. literature on
evolutionary acquisition). David N. Ford and John Dillard, “Modeling the Performance and Risks of Evolutionary Acquisition,” Defense AR Journal 16,
no. 2 (2009): 143. I thank Jackie Schneider for her insights on this topic.

30 Interview with John K. Hawley, May 9, 2022.

opment typically follows a linear “waterfall model,”
which begins with system requirements specification
and then progresses sequentially through system
design, development, testing, and deployment. Within
this process, evaluation and feedback from operators
are limited to the late stages of development, by
which time it is difficult to rework system concepts.28
As a 2010 National Research Council report notes,
the Defense Department’s acquisition practices for
information technology are hampered by a “serial
approach to development and testing (the waterfall
model),” in which “end-user participation often is
too little and too late.”29 Like water and waterfalls,
operator input does not flow back up the chain of
software development.

These limited feedback channels between end-use
operators and software developers produce more acci-
dent-prone military systems through three interrelated
pathways (see figure 1). First, the waterfall method
tends to produce human-machine interaction issues
such as difficulty accessing critical data and unwieldy
interface designs. Consider, as an example, one of the
early interfaces for the Patriot system, which Dr. John K.
Hawley, an engineering psychologist with the U.S. Army
Research Laboratory, recalls was an error-prone inter-
face based on his user tests: “An insect could land on
it even and change the settings.” Yet, the interface was

not fixed, in part due to the rigid sequential
software development process established
by Army senior leaders and the prime con-
tractor Raytheon. As Hawley recounts, “But
they had already spent all this money on it,
and so they fielded it. The soldiers are put
into the position where they have to use it
whether they like it or not.”30

Therefore, software can “fail” in the
sense that it does not meet the needs of
users, even if it passes all the technical
requirements established in the system

acquisition phase. Studies by human-computer inter-
action specialists have identified confusing interfaces
as contributing to inadvertent military launches,
fratricide, and other safety hazards. For instance, the

Even if operators are
sufficiently involved in the
software development process,
they still might not be able to
anticipate all the scenarios under
which the system will be used.

The Scholar Machine Failing: How Systems Acquisition and Software Development Flaws Contribute to Military Accidents

15 16

lack of visual contrasts between button interfaces for
different settings has caused drone crashes.31 These
human-machine interaction problems are intensified
in high-stress scenarios when military operators must
rapidly interpret data and make decisions.

Second, limited operator involvement in the soft-
ware design process leads to fewer opportunities to
discover unanticipated vulnerabilities. As the Scud
missile attack discussed above demonstrates, there
are some contingencies that could be identified in the
development process if software developers better
understood how operators would likely employ a
system.32 To address this issue, the Department of
Defense has pushed for agile software engineering
practices that involve rapid prototyping and early
engagement with operators.33

Even if operators are sufficiently involved in the
software development process, they still might not
be able to anticipate all the scenarios under which
the system will be used.34 Rebecca Slayton has shown
that missile defense systems require vastly different
software settings for field tests versus real-world
use.35 Regardless, iterative software development
practices can uncover more potential safety hazards
than rigid, sequential ones.

Third, waterfall models of software development
limit the capacity of military organizations and de-
fense contractors to ameliorate issues revealed by the
testing and deployment process. Unlike the hidden
vulnerabilities issue discussed above, these safety

31 Mary L. Cummings, “Automation and Accountability in Decision Support System Interface Design,” Journal of Technology Studies 32, no. 1
(2006); Thomas B. Sheridan, Humans and Automation: System Design and Research Issues (New York: Wiley, 2002).

32 Eric Schmitt, “AFTER THE WAR; Army Is Blaming Patriot’s Computer for Failure to Stop the Dhahran Scud,” The New York Times, May 20, 1991,
https://www.nytimes.com/1991/05/20/world/after-war-army-blaming-patriot-s-computer-for-failure-stop-dhahran-scud.html; Eliot Marshall, “Fatal
Error: How Patriot Overlooked a Scud,” Science 255, no. 5050 (March 13, 1992): 1347, https://doi.org/10.1126/science.255.5050.1347.

33 Defense Innovation Board, “Software Acquisition and Practices (SWAP) Study,” May 3, 2019, https://innovation.defense.gov/software/.

34 Alan Borning, “Computer System Reliability and Nuclear War,” Communications of the ACM 30, no. 2 (1987): 112–31.

35 Slayton, “The Fallacy of Proven and Adaptable Defense.” These unanticipated contingencies correspond to the novel and unexpected interac-
tions under normal accidents theory.

36 Hawley, “Patriot Wars,” 13.

37 Defense Innovation Board, “Software Acquisition and Practices (SWAP) Study,” viii–ix. I am grateful to an anonymous reviewer for guidance on
this passage.

risks are known. However, they remain unresolved
because, at this phase of the software development
lifecycle when end-use operators point out hazards,
it is too late, costly, and difficult to rework system
designs. As one expert on human-machine integra-
tion in military systems notes, “By that time, most
degrees of freedom for concept reevaluation or design
changes have been lost.”36

Due to the inherent complexity and adaptability of
software, the effect of system procurement practices
on safety is especially salient for software-intensive
military systems. As the three pathways illustrate,
military software development presents unique chal-
lenges because it necessitates continuous adaptation
to unanticipated vulnerabilities as well as end-use
operator understanding of the system. For hardware
development, sequential procurement approaches
may be more suitable for managing safety issues
since potential vulnerabilities and human-machine
interaction effects are more predictable.37

To reinforce this point, consider the differences
between “smart” and normal (or “dumb”) refrig-
erators. When accounting for hardware failures in
a normal fridge, manufacturers tend to focus on a
limited set of physical or chemical mechanisms (e.g., a
puncture that results in gas leakage). Software-based
smart fridges, on the other hand, present a wider
range of failure paths connected to unpredictable
human-machine interactions (e.g., user forgets to
connect fridge to new wi-fi system, which causes

temperature control software to malfunction).
Software development lifecycle theory builds on

the normal accident and high reliability organization
approaches, which have broadened our perspective on
software’s role in military accidents, but also unearths
overlooked causal factors. Debates between the normal
accidents and high reliability organizations camps tend
to concentrate on whether accidents are inevitable
in complex technological systems.38 Likewise, this
clash has been adjudicated in military technologies
by focusing on how military organizations operat-
ed and managed such systems after they had been
fielded. Software development lifecycle theory brings
the causal timeline of military accidents back to the
initial phases of software design and requirements
specifications. In doing so, it also expands the range
of actors responsible for military accidents to include
the defense contractors that build the software.

The ramifications of software development lifecycle
theory are present in other contexts where national
governments rely on contractors to develop tech-
nological systems.39 On the one hand, the Defense
Department’s efforts to work with non-traditional
contractors (commercial firms with limited defense
sales) could mitigate software failure scenarios, as
these entities have developed significant experience
with agile methods in large-scale software develop-
ment projects such as a traffic management system.40
On the other hand, the costs of incorporating oper-
ational feedback on integrating commercial-off-the-
shelf software products in military systems may be
prohibitive.41 Like the Defense Department’s acqui-
sition process, the National Aeronautics and Space
Administration’s contracting process has sometimes
limited the ability of astronauts to provide input on
safety issues.42 As a result, contractors aggressively
pursued short-term fixes to avoid significant delays in
delivery, which created unaddressed safety hazards.

As for the root causes leading militaries to adopt

38 In Sagan’s words, these discussions center around “conflicting visions about what could be called the degree of perfectibility that is possible
in complex organizations.” Sagan, The Limits of Safety, 14.

39 These theoretical claims also apply to other militaries. On different models of defense software development in France, the United Kingdom,
Germany, and China, see Simona R. Soare, Pavneet Singh, and Meia Nouwens, “Software-Defined Defence: Algorithms at War,” The International
Institute for Strategic Studies, February 2023, https://www.iiss.org/research-paper//2023/02/software-defined-defence.

40 Mary Ann Lapham et al., “Considerations for Using Agile in DoD Acquisition,” Software Engineering Institute, 2010, https://insights.sei.cmu.
edu/documents/2180/2010_004_001_15155.pdf; Michael P. Fischetti, “The Challenges Facing ‘Non-Traditional’ Contractors,” Georgia Tech Contract-
ing Education Academy (blog), April 10, 2020, https://contractingacademy.gatech.edu/2020/04/10/15587/.

41 Nancy G. Leveson, “Using Cots Components in Safety-Critical Systems,” in RTO Meeting on COTS in Defense Applications, 2000, http://sun-
nyday.mit.edu/papers/cots.pdf.

42 Diane Vaughan, “Autonomy, Interdependence, and Social Control: NASA and the Space Shuttle Challenger,” Administrative Science Quarterly
35, no. 2 (1990): 241, https://doi.org/10.2307/2393390.

43 Peter Dombrowski and Eugene Gholz, Buying Military Transformation: Technological Innovation and the Defense Industry, 1st ed. (New York:
Columbia University Press, 2006); John A. Alic, “The Origin and Nature of the U.S. ‘Military-Industrial Complex’,” Vulcan 2, no. 1 (2014): 63–97.

44 Eugene Gholz and Harvey M. Sapolsky, “Restructuring the U.S. Defense Industry,” International Security 24, no. 3 (1999): 34–35.

45 Lapham et al., “Considerations for Using Agile in DoD Acquisition”; Daniel E. Schoeni, “Long on Rhetoric, Short on Results: Agile Methods and
Cyber Acquisitions in the Department of Defense,” Santa Clara High Technology Law Journal 31 (2015): 385.

46 Joachim Blatter and Till Blume, “In Search of Co-Variance, Causal Mechanisms or Congruence? Towards a Plural Understanding of Case Stud-
ies,” Swiss Political Science Review 14, no. 2 (2008): 315–56, https://doi.org/10.1002/j.1662-6370.2008.tb00105.x.

certain patterns of software acquisition, political
and bureaucratic barriers often hamper transitions
to iterative software development approaches. To
maintain key programs and lucrative contracts based
on waterfall models, the prime defense contractors
exploit their close ties with politicians and defense
officials as well as their deep understanding of
military requirements built up over many years of
doing business with the government.43 Since more
agile development might entail losing out to more
open-minded competitors, there is little incentive
for long-time defense contractors to abandon the
waterfall model, as shown by resistance to past ac-
quisition reforms.44 Senior procurement officials,
who “grew up with” the waterfall approach, may
not invest in building an acquisition culture that
supports agile methods.45

Empirics

Illuminating dynamics often overlooked by the two
dominant approaches of normal accidents and high
reliability organizations theories, I assess software
development lifecycle theory across four historical
case studies: the Vincennes accident, the Patriot
fratricides, the USS McCain collision, and Kessel Run
software’s performance in the 2021 Afghanistan evac-
uation. Adopting a process-tracing approach, in each
of the cases, I evaluate the observable implications
of software development lifecycle theory, and then
compare them to those derived from the two more
established theories (see table 1).46 While the three
theoretical approaches agree that there is a causal
relationship between the introduction of software
and an accident, they offer different interpretations
of how this process occurs, in particular as it relates
to principal actors, timing of most relevant decisions,
precipitating events, and conceptions of software
failure. The last case, in which the U.S. Air Force

Figure 1. Causal Graph for Software Development Lifecycle Theory

The Scholar Machine Failing: How Systems Acquisition and Software Development Flaws Contribute to Military Accidents

17 18

experimented with a different approach to software
acquisition and development, further probes software
development lifecycle theory by incorporating vari-
ation on the type of software acquisition pathway.

All these accidents are the product of multiple, over-
lapping factors. In many cases, precipitating conditions
based on all three perspectives are present, making it
difficult to evaluate their relative explanatory power. In
addressing this issue, I first analyze whether the evi-
dence matches up with predictions unique to software
development lifecycle theory, which do not intersect
with the other mechanisms.47 For instance, if an ac-
cident can be traced to known vulnerabilities rooted
in software development patterns, which
neither made the system more complex
nor could have been addressed by more
training, then this would constitute strong
evidence for my argument. Second, I exam-
ine the historical record for evidence that
components of the software development
lifecycle mechanism served as antecedent
conditions for the high reliability organi-
zations and normal accident mechanisms.
Indications that limited feedback between
operators and software developers pro-
duced systems that either were highly complex and
tightly coupled or that constrained the ability of op-
erators to manage safety risks would illustrate the
value of software development lifecycle theory.

To ensure a rigorous test of software development
lifecycle theory, I selected cases that are representative

47 Derek Beach and Rasmus Brun Pedersen, Process-Tracing Methods: Foundations and Guidelines (Ann Arbor: University of Michigan Press, 2013), 100–5.

48 Bode, “Practice-Based and Public-Deliberative Normativity”; Scharre, “Autonomous Weapons and Operational Risk”; Miller et al., “The Navy
Installed Touch-screen Steering Systems to Save Money.”

49 Scharre, “Autonomous Weapons and Operational Risk.”

50 The three main branches of the U.S. military are represented: the Air Force (Afghanistan evacuation), the Navy (the Vincennes and the
McCain), and the Army (Patriot fratricides). While the Patriot fratricides involve three friendly fire incidents, if my argument holds, these three epi-
sodes should trace back to software development lifecycle issues that are common to all Patriot systems. Thus, I treat these incidents as one case.

illustrations of the normal accidents and high relia-
bility organizations models. Analyses of the McCain,
Vincennes, and Patriot accidents often pinpoint either
complex software or inadequate operator training as
key causal factors.48 Paul Scharre, for example, writes,
“The causes behind the Patriot fratricides illustrate
how normal accidents also can occur in military sys-
tems.”49 This test’s generalizability is enhanced be-
cause these cases also differ in many ways, including
their operational context, level of complexity, the
defense contractor involved, type of safety hazard, as
well as the relevant military organizations.50

 The focus on software applications in navigation,
operational planning, and weapons control systems
— which aid platforms in tracking, targeting, and
shooting their targets — provides two further ad-
vantages. First, these are reference classes that are
similar in many relevant aspects to how AI could

be incorporated into weapons platforms.51 Second,
compared to those linked to nuclear weapons sys-
tems, command and control issues in these military
software applications are relatively understudied, and
they provide a new universe of cases to explore the
effects of technology on military accidents.52 Thus,
they provide fertile ground for evaluating whether
software development lifecycle theory can offer in-
sights not fully captured by the normal accidents or
high reliability organizations perspectives.

Lastly, these cases all feature systems in military set-
tings where safety must be balanced against operational
effectiveness. Lessons learned from software-related
accidents in the civilian sector where safety consider-
ations are paramount, such as airline transport or air
traffic control, may not translate. Similarly, in many
of the military operations studied by high reliability
organization researchers, such as non-combat aircraft
operations, safety goals were protected from other
competing priorities.53 Insights from this article’s cases,
therefore, enable us to better understand the risks of
human-software interaction in conflict settings where
reducing accident risk is especially challenging.

I drew from three additional sources to enrich the
case study analysis: recently declassified U.S. govern-
ment documents, archived discussions in the Forum
on Risks to the Public in Computers and Related Sys-
tems,54 and interviews with contractors and military
officials who developed and tested these systems.55
Taken together, these sources fill important gaps in the
official post-accident investigations. Typically staffed
by military operators who want to avoid implicating
senior procurement decisionmakers, boards of in-
quiry for military accidents tend to avoid investigating
the system design process.56 Ideally, the scope of the
analysis would include non-U.S. cases. However, this
decision was shaped by practical considerations, in-
cluding access to interviewees and archival records.

51 Perrow, the pioneer of normal accidents theory, also cites software as a neglected area. Perrow, Normal Accidents, 354.

52 Gene I. Rochlin, “Iran Air Flight 655: Complex, Large-Scale Military Systems and the Failure of Control,” in Responding to Large Technical
Systems: Control or Anticipation, ed. Todd R. LaPorte (Berkeley: University of California Press, 1991), 95–121.

53 Leveson et al., “Moving Beyond Normal Accidents and High Reliability Organizations,” 239.

54 Sponsored by the Association for Computing Machinery, this forum brings together experts to discuss computer-related mishaps.

55 This study was declared exempt by the George Washington University Institutional Review Board under Department of Health and Human
Services regulatory category 2 (IRB# NCR245704).

56 Interview with C.W. Johnson, author of handbook on military accidents, March 13, 2023.

57 Samuel Cox, “H-020-1: USS Vincennes Tragedy,” July 2018, http://public1.nhhcaws.local/content/history/nhhc/about-us/leadership/director/
directors-corner/h-grams/h-gram-020/h-020-1-uss-vincennes-tragedy--.html.

58 Nick Danby, “How the Downing of Iran Air Flight 655 Still Sparks U.S.-Iran Enmity,” Responsible Statecraft (blog), July 2, 2021, https://respon-
siblestatecraft.org/2021/07/02/how-the-downing-of-iran-air-flight-655-still-influences-us-iran-enmity/.

59 William M. Fogarty, Investigation Report: Formal Investigation into the Circumstances Surrounding the Downing of Iran Air Flight 655 on 3
July 1988 (Washington, DC: Department of Defense, 1988).

60 R. Jeffrey Smith, “Decision on Vincennes Echoes Precedent,” Washington Post, August 20, 1988, https://www.washingtonpost.com/archive/
politics/1988/08/20/decision-on-vincennes-echoes-precedent/069c5094-670b-42ed-b2ae-d10b904354cb/.

61 Kristen Ann Dotterway, “Systematic Analysis of Complex Dynamic Systems: The Case of the USS Vincennes,” Master’s thesis, Naval Postgrad-
uate School, 1992.

USS Vincennes Shootdown of Iran
Air Flight 655

On July 3, 1988, the USS Vincennes was passing
through the Strait of Hormuz, within Iranian territorial
waters, to investigate reports of Islamic Revolution-
ary Guard Corps speedboats attacking neutral mer-
chant ships. The Vincennes boasted an Aegis system,
a highly sophisticated combat information center that
automated functions such as target classification and
target-weapon pairing.57 That morning, radar operators
on the Vincennes misidentified an Iranian passen-
ger airliner as an Iranian F-14 Tomcat, and the U.S.
warship fired two surface-to-air missiles at Iran Air
flight 655, killing all 290 civilians on board. Before the
July 2014 MH17 shootdown over Ukraine, it stood as
the deadliest civilian airliner shootdown in history.58

How does a billion-dollar warship, equipped with
state-of-the-art software for tracking and classifying
aircraft, end up shooting down a civilian passenger
plane? The official investigation, known as the Fogarty
report, revealed that the ship’s Aegis system supplied
accurate data to the Vincennes crew.59 The Aegis
provided altitude information that the plane was
ascending (like a commercial plane), not descending
(like a hostile military plane). The crew, however,
reported that the aircraft was descending as it ap-
proached the ship.60 There is much to be mined from
the high-stakes calls made in these critical minutes,
and the ensuing investigations and Congressional
hearings identified human error (including stress and
psychological issues) as the primary cause.61 Yet, it is
equally, if not more, valuable to trace problems with
the Aegis further back to the decisions made about
software design in the initial procurement phase. This
would also cast attention on the companies that built
the system, namely the RCA Corporation, which was

Insights from this article’s cases,
therefore, enable us to better

understand the risks of human-
software interaction in conflict

settings where reducing accident
risk is especially challenging.

Software development lifecycle High reliability organizations Normal accidents

Principal
actors

Software developers (contractors)
and senior procurement officials

Military organizations responsible
for operating software systems

Military organizations
responsible for operating
software systems

Timing
of most
relevant
decisions

Initial contracting phase, software
requirements specification,
preceding decade(s)

After the system has been
fielded (emphasis on continuous
operations and training)

Combination of system
design and organizational
operations after system
has been fielded

Conception
of software
failure

Software development process
does not incorporate feedback
from end-users

Operators not adequately trained
to manage software

Software contributes to
tight coupling and high
complexity

Precipitating
events

Predictable issues that remain
unaddressed due to software
development lifecycle

Mistakes that escalate because
operators fail to maintain system
safety

Novel and unexpected
interactions between
system components

Table 1. Three Perspectives on Software’s Contribution to Military Accidents

The Scholar Machine Failing: How Systems Acquisition and Software Development Flaws Contribute to Military Accidents

19 20

awarded the prime contract for the Aegis in 1969.62
If software development lifecycle theory holds,

the case evidence should show that the system de-
velopment process factored into the combat infor-
mation center operators’ struggles with managing
Aegis-related risks. One of the key issues is whether
the Aegis’ program managers and RCA gave sufficient
attention to user interface considerations in tense,
combat settings. Matt Jaffe, a systems engineer at
RCA in the mid-1970s, pushed for the Aegis display
to include a rate-of-change indicator for altitude.
On debates over this issue, Jaffe recalls, “I wound
up literally screaming at my boss, ‘You hired me for
my technical experience and combat experience. If
you’re not going to listen to me, why don’t you fire
me?!’”63 Having previously served in the Vietnam
War on ships equipped with forerunners to the Aegis
system, Jaffe was one of the few people involved in
Aegis software development with experience oper-
ating similar systems in high-stress environments.
Without this rate-of-change indicator, controllers
had to “compare data taken at different times and
make the calculation in their heads, on scratch pads,
or on a calculator — and all this during combat.”64
This increased the likelihood of misreading whether
a ship was descending or ascending.

These issues could be traced back to
the extent, timing, and influence of feed-
back from military operators to software
contractors in the system development
process. The Aegis system was developed
based on the Department of Defense’s
“1679A” software standard, which heavily
relied on the waterfall model and even re-
stricted the ability of designers and users
to collaborate and revise initial specifica-
tions.65 As Jaffe states, “When Aegis was
being developed, it was being developed
with a waterfall (model). … we drew up a

62 Philip J. Hilts, “Aegis System Has Been Controversial from the Start,” Washington Post, July 7, 1988, https://www.washingtonpost.com/
archive/politics/1988/07/07/aegis-system-has-been-controversial-from-the-start/eb4d2ab1-b3a4-40d0-8496-82b1541d924f/. Through a series of
acquisitions and sales, beginning with General Electric’s purchase of RCA in 1986, Lockheed Martin has taken over this business line.

63 Interview with Matt Jaffe, March 8, 2023. Jaffe also emphasized that RCA managers provided some valid pushback to this indicator, including:
the limited display space, risks of information overload, and issues related to the vertical beam width of the radar (which could muddle rate-of-
change calculations). Ultimately, Jaffe’s supervisor claimed that the Navy never requested such an indicator. For Jaffe, the root issue remained that
the input RCA received from the Navy was from senior officers on the project management team who did not have operational experience with
these systems.

64 Eric J. Lerner, “Lessons of Flight 655,” Aerospace America 27, no. 4 (1989): 18.

65 Harvey Lyon, “Navy Military Standards for Technical Software Documentation of Embedded Tactical Systems; a Critical Review,” Naval Post-
graduate School, 1985, https://apps.dtic.mil/sti/citations/ADA161238, 13–14, 26–27; National Research Council, “Achieving Effective Acquisition of
Information Technology in the Department of Defense,” 48.

66 Interview with Matt Jaffe, March 8, 2023.

67 I am very grateful to Shelby Oakley, at the Government Accountability Office, for helping me locate this report. U.S. General Accounting
Office, “Weapons Testing: Quality of DOD Operational Testing and Reporting,” July 26, 1988, https://www.gao.gov/products/pemd-88-32br.

68 U.S. General Accounting Office, “Weapons Testing.”

69 Ahern, Tim. “Aegis System Got Poor Marks in GAO Report.” Associated Press, July 9, 1988. Regarding these sea trials, a detailed Newsweek
investigation stated that “the navy could not afford to risk failure in the trials for fear that Congress would stop funding the Aegis program.” John
Barry and Roger Charles, “Sea of Lies,” Newsweek, July 12, 1992, https://www.newsweek.com/sea-lies-200118.

software requirements specification document, sent
it to the Navy for review, and then they would come
back for one meeting of a few hours. It’s hard to do
human-machine interface that way.”66

Furthermore, many actors had raised concerns that
Aegis systems proceeded into production without
adequate attention to testing and operator feedback.
A General Accounting Office investigation reported a
“long list of testing limitations” to the Aegis system
at RCA’s facility in Moorestown, New Jersey, such
as the on-land location, lack of actual missile firing
capability, and differences between the tested and
fielded versions of the system.67 The realism of these
tests has also been questioned. The test ranges were
set up such that threats would only come from a
predictable area. Moreover, certain events, such as
aircraft leaving the immediate test area, tipped off
crews that a test event would soon occur. Together,
these conditions allowed “crews to deduce the gen-
eral direction, timing, and type of the test threats.”68
Sources familiar with a classified version of the Gen-
eral Accounting Office report confirmed that these
so-called sea tests did not approximate a realistic,
challenging combat environment.69

Unlike many post-incident investigations, this Gen-
eral Accounting Office report — released just three
weeks after the Vincennes accident — identified
problems with the Aegis originating from before the
accident, thus limiting the risk of hindsight bias in
shaping its conclusions. The report drew on interviews
done between September 1987 and March 1988. It
also scrutinized the testing and evaluation processes
for not just the Aegis but also five other systems.70

Finally, even accounts that focused on the tactical
judgements in the final minutes before the accident
eventually landed on problems stemming from the
early stages of system development. As noted above,
Congress and the Navy’s investigations of the Vin-
cennes accident pointed to the problem of “scenario
fulfillment,” which leads highly trained organizations
to unconsciously ignore and misinterpret evidence
that does not conform to a preconceived scenario,
such as an Iranian air attack.71 Later examinations of
the Vincennes case have undermined this account,
arguing that the crew’s mistakes were likely due to a
combination of information overload and unwieldy

70 U.S. General Accounting Office, “Weapons Testing”; Eleanor Chelimsky, “Review of the Office of Operational Test and Evaluation: Hearing
before the Acquisition Policy Panel Committee on Armed Services,” September 14, 1988.

71 Changes in the rules of engagement are another contributing factor. See Sagan, “Rules of Engagement.” Sagan identifies “hair trigger” rules of
engagement as a “permissive cause” in the Vincennes tragedy.

72 For one of the strongest arguments against the “scenario fulfillment” explanation, see Dotterway, “Systematic Analysis of Complex Dynamic
Systems.” Nancy C. Roberts and Kristen Ann Dotterway, “The Vincennes Incident: Another Player on the Stage?” Defense Analysis 11, no. 1 (1995):
31–45.

73 Richard Pew, “On the Subject of the USS Vincennes Downing of Iran Air Flight 655,” September 14, 1988. Emphasis mine.

74 Hilts, “Aegis System Has Been Controversial from the Start.”

user displays, rather than collective bias.72 Moreover,
some psychologists stressed that operator errors were
entrenched in the Aegis system design and development
process. Richard W. Pew, in testimony to a Congres-
sional hearing on the Vincennes accident on behalf of
the American Psychological Association, stated, “Part
of the problem is that automation decisions are made
at the time the fundamental architecture of a system
is being defined. We need more extensive methods of
analysis to understand how to integrate human op-
erator performance with system performance during
the conceptual design state of new weapon systems.”73

What can normal accidents and high reliability
organizations theories reveal about the Vincennes
case? At the time, the Aegis was one of the most
complicated weapons systems in action.74 It could
also operate at high levels of automation from target
tracking to missile firing sequences. This type of
tight coupling was needed to respond to the types
of threats that Aegis would likely face — the time
between the appearance of the Iranian aircraft on
the radar screen and the decision to fire spanned

Later examinations of the
Vincennes case have undermined

this account, arguing that the
crew’s mistakes were likely due to a
combination of information overload

and unwieldy user displays, rather
than collective bias.

The Scholar Machine Failing: How Systems Acquisition and Software Development Flaws Contribute to Military Accidents

21 22

references to the compression of time or complexity
of the technological system.86 RCA, the system devel-
oper, is not mentioned even once. Fully understanding
the causes of the Vincennes tragedy requires looking
beyond just the organization using the Aegis system
to Moorestown, New Jersey, where the Missile and
Surface Radar Division of RCA was located.

Patriot “Friendly Fire” Incidents

In 2003, during the Iraq War, the U.S. Army’s Patriot
air defense system committed three “friendly fire” inci-
dents. In the first episode, which occurred on March 23,
a Patriot missile shot down a Royal Air Force Tornado
fighter-bomber, killing both crewmembers. Two days
later, a Patriot radar locked on to a U.S. Air Force F-16;
in response, the pilot destroyed the Patriot battery
with a missile. Fortunately, this confrontation resulted
in no casualties. About a week later, a Patriot battery
shot down a U.S. Navy F/A-18C, killing the pilot. These
three friendly fire incidents comprised 25 percent of
the Patriot’s 12 engagements in the conflict.87

Problems with how the Patriot system interpreted
identification friend or foe signals were central to these
friendly fire incidents. In 2005, a Defense Science Board

86 Though the formal investigation of the shootdown exonerated Captain Rogers from blame, other accounts highlight that the captain’s aggres-
sive pursuit of Iranian gunboats contributed to the time pressures faced by the Aegis system. David Evans, “Vincennes: A Case Study,” U.S. Naval
Institute Proceedings 119, no. 8 (August 1993), https://www.usni.org/magazines/proceedings/1993/august/vincennes-case-study.

87 Scharre, Army of None.

88 Defense Science Board Task Force. “Patriot System Performance” (Washington, DC: Department of Defense, 2005).

89 Defense Science Board Task Force.

90 This contract initiated the first phase of software modifications (PAC-1). The PAC-2 software changes, which were the most relevant to Opera-
tion Iraqi Freedom, began in 1986.

91 Hawley, “Patriot Wars.”

92 Interview with John K. Hawley, May 9, 2022.

93 Frank Conahan, “DOD’s Management of Government Property Furnished to Defense Contractors,” June 23, 1983, 9, https://www.gao.gov/
products/t-nsiad-88-19.

94 Hawley, “Patriot Wars.”

task force reviewed the Patriot’s performance in the
Iraq War and concluded that the identification friend
or foe technology developed by Raytheon, the system’s
prime contractor, performed poorly — a problem that
had surfaced during training exercises.88 This begs the
question of why this issue was not addressed. The
task force stated that it “remains puzzled as to why
this deficiency never garner[ed] enough resolve and
support to result in a robust fix.”89

Detailed investigations established that the an-
swer to this puzzle lies in the system development
process, which extends back to at least 1985, the
year that Raytheon was awarded a Patriot software
modernization contract.90 According to John Hawley,
who has over 35 years of expertise on human-ma-
chine interactions in Patriot units, the Department
of Defense’s systems acquisition process was the
biggest obstacle to safer Patriot performance in the
Iraq war. Raytheon followed the waterfall model,
in which feedback and evaluation were left until
system development was nearly complete.91 Hawley
comments, “[The system developers] still have this

idea that they have this acquisition pro-
cess, and when it’s finished, it’s finished.
Oftentimes, the user is not equipped to
use it that way.”92 The General Accounting
Office diagnosed similar issues in earlier
cycles of Patriot development, in which
“the Army believed it necessary to pro-
ceed (with production) even though test
results identified major problems.”93

This waterfall approach was especially
ill-suited to Patriot upgrades in identifica-
tion algorithms and automatic operating
modes, which were brittle and demanded
military users to intervene in extreme sit-
uations.94 As they made upgrades to the
Patriot’s software, contractors and concept
designers built technical components to

meet certain efficiency and performance requirements,
leaving operators to deal with the residual impacts
(e.g., the Patriot’s difficulties with identifying friends
or foes). Whether operators could meet the associated

four minutes.75 With this type of system, normal ac-
cidents theory tells us that a Vincennes-like disaster
was inevitable. If the Vincennes accident was caused
by novel and unexpected interactions related to the
Aegis system, that would further support the normal
accident theory explanation. Based on evidence gath-
ered by Captain Kristen Ann Dotterway, it is possible
that the Aegis automatically re-assigned the Iranian
plane’s track number (TN 4474) to a different track
number (TN 4131) entered by the USS Sides, which
was operating with the Vincennes at the time.76 Mo-
ments later, when the Vincennes crew asked for an
update on TN 4474, thinking it was still attached to
the Iranian plane, the Aegis computer had already
matched that number to a U.S. Navy aircraft that was
landing on a U.S. aircraft carrier in the Gulf of Oman.
By some accounts, this was a “freak occurrence” that
explains why multiple crew members reported that
the Iranian aircraft was descending.77

On the other hand, aspects of this case suggest
that the breakdowns in information-gathering aboard
the Vincennes were predictable. Assuming the TN
4474 re-assignment account holds up, the software
development process should have addressed the risks
associated with automatically changing track num-
bers.78 At the very least, the Aegis should have had
an alert mechanism that notified the operator when
track numbers had been automatically re-assigned.79
Dotterway, who originally reconstructed the sequence
of events in this account, also blames the “poor in-
terface between the Aegis weapon system and the
operator, especially the procedural complexity and a
problematic presentation of information illustrated
in the auto-correlation and subsequent confusion
of track numbers.”80 Furthermore, another explana-
tion for the “descending” call was that the crew had
mistaken decreasing range values as altitude values,
which would connect back to the system development
issues related to rate-of-change indicator for altitude.81

75 Ingvild Bode and Thomas Watts, “Meaning-Less Human Control: Lessons from Air Defence Systems on Meaningful Human Control for
the Debate on AWS,” Centre for War Studies (University of South Denmark) and Drone Wars UK, 2021, https://dronewars.net/wp-content/up-
loads/2021/02/DW-Control-WEB.pdf, 44.

76 A track number is the unique label that a radar system assigns to each new possible target.

77 Dirk Maclean, Shoot, Don’t Shoot: Minimizing Risk of Catastrophic Error Through High Consequence Decision-Making, Air Power Development
Centre, 2017, 29.

78 In fact, these types of risks were well-established, not freak occurrences. Interview with Dr. Nancy Roberts, June 12, 2023.

79 Dotterway, “Systematic Analysis of Complex Dynamic Systems,” 59.

80 Dotterway, 173.

81 Dotterway, 54.

82 Scharre, Army of None.

83 Barry and Charles, “Sea of Lies.”

84 Barry and Charles.

85 Fogarty, Investigation Report.

By highlighting the operators of the Vincennes, the
high reliability organizations approach also offers
some insights into this case. According to the theory,
preventing Aegis-linked accidents comes down to
whether organizations can cultivate environments in
which groups can reliably perform in high-pressure
situations, such as deference to experienced front-
line operators who can independently circumvent
rules to prevent accidents when issues arise.82 In
the Vincennes case, the combat information center
operators had limited experience managing Aegis
systems in high-stress environments. According to
a Newsweek investigation, the tactical officer tasked
with directing the ship’s navigation and weapons
systems based on data from the combat information
center “was uncomfortable with computers” and,
according to one fellow officer, “used his screen as
a surface for ‘self-stick’ notes” instead of displaying
potential incoming threats.83

Yet, it is important to not overstate the implications
of high reliability organizations theory in this case.
Even the most well-trained and experienced crew
could have struggled to process Aegis data in combat
conditions.84 As the evidence above demonstrates,
the Vincennes’ problems were less about the level
of training or the ability of operators to learn from
mistakes and more entrenched in the flaws of the
software development model. By the time operators
could train with and test the system, any issues they
identified could not have been fixed. Thus, the high
reliability organizations approach disregards the role
of the contractors who develop Aegis software and
the robustness of feedback loops between military
operators and system designers.

The Department of Defense’s official investigation
report on the Vincennes incident numbers 153 pages.85
There are over 70 references to Captain Will Rogers
III, who commanded the Vincennes; nearly 20 men-
tions of the experience level of operators; and nine

As they made upgrades to the
Patriot’s software, contractors
and concept designers built
technical components to meet
certain efficiency and performance
requirements, leaving operators
to deal with the residual impacts
(e.g., the Patriot’s difficulties with
identifying friends or foes).

The Scholar Machine Failing: How Systems Acquisition and Software Development Flaws Contribute to Military Accidents

23 24

demands was not tested until the end of the waterfall
software development process, when it was too late to
change the system’s fundamental design. Hawley and
Anna L. Mares, another researcher at the U.S. Army
Research Laboratory, conclude, “The roots of [the
Patriot’s] apparent human performance shortcomings
can be traced back to systemic problems resulting from
decisions made years earlier by concept developers,
software engineers, procedures developers, testers,
trainers, and unit commanders.”95

Indeed, even efforts oriented toward identifying
deficiencies among U.S. Army Patriot operators
eventually turned to the system acquisition process.
Following the 2003 fratricides, the Army Research
Laboratory initiated “the Patriot Vigilance Project,”
which, as its name suggests, initially aimed to investi-
gate the discipline and alertness of Patriot operators.
Ultimately, after expanding its scope to cover 20
years of the Patriot’s evolution, the review warned
against laying too much blame on operators, instead
emphasizing deeper system development problems
like “faulty going-in concepts” that proved “difficult
and expensive to correct” later in the process.96

How well do the normal accidents and high re-
liability organizations approaches account for the
Patriot friendly fire accidents? Certainly, the two
system features of normal accidents were present
in the Patriot case. To begin, it was difficult for op-
erators to grasp the intricate connections between
the Patriot system’s moving parts. In the aftermath
of the incidents, experts scrutinized the Patriot’s
“enormous complexity,” which had been enhanced
by software upgrades to enable automated engage-
ment of a target.97 Second, the Patriot system was
also tightly coupled. There was very little reaction
time between the initial detection of an incoming
missile and the decision to respond.98 As the United
Kingdom Ministry of Defence’s inquiry into the Pa-

95 John K. Hawley and Anna L. Mares, “Human Performance Challenges for the Future Force: Lessons from Patriot after the Second Gulf War,” in
Designing Soldier Systems: Current Issues in Human Factors, ed. John Martin et al. (London: CRC Press, 2018), 3–34.

96 Hawley, “Patriot Wars.”

97 Charles Piller, “Vaunted Patriot Missile Has a ‘Friendly Fire’ Failing,” Los Angeles Times, April 21, 2003, https://www.latimes.com/archives/la-
xpm-2003-apr-21-war-patriot21-story.html.

98 If the Patriot was operating in auto-fire mode, even less slack was present.

99 Ministry of Defence, “Aircraft Accident to Royal Air Force Tornado GR MK4A ZG710,” March 23, 2003, 3, https://www.gov.uk/government/publi-
cations/military-aircraft-accident-summary-aircraft-accident-to-raf-tornado-gr-mk4a-zg710; cited in Bode and Watts, “Meaning-Less Human Control.”

100 Scharre, Army of None, 144.

101 Theodore A. Postol, “An Informed Guess about Why Patriot Fired upon Friendly Aircraft and Saw Numerous False Missile Targets during
Operation Iraqi Freedom,” Security Studies Program, Massachusetts Institute of Technology, April 20, 2004; Benjamin S. Lambeth, The Unseen War:
Allied Air Power and the Takedown of Saddam Hussein (Annapolis, MD: Naval Institute Press, 2013), 245.

102 After the F-16 aircraft shot down the Patriot unit, one pilot remarked, “We had no idea where the Patriots were, and those guys were locking
us up on a regular basis. No one was hurt when the Patriot was hit, thank God, but from our perspective they’re now down one radar. That’s one
radar they can’t target us with any more.” Lambeth, The Unseen War, 115.

103 Scharre, Army of None, 144.

104 Automation bias refers to the phenomenon when operators have “too much” trust in autonomous systems. Bode and Watts, “Meaning-Less
Human Control”; Horowitz, “When Speed Kills.”

105 Defense Science Board Task Force, “Patriot System Performance.”

triot-Tornado fratricide put it, “The crew had about
one minute to decide whether to engage.”99

While some aspects of this case bear out the ex-
pectations of normal accidents theory, it misses other
key contributing factors to the Patriot accidents. The
observable implications of normal accidents are most
compatible with the second fratricide involving the
F/A-18C, in which the Patriot system failed to adapt to
novel and unexpected interactions.100 In this instance,
when Patriot radars operated in close proximity and
followed the same aircraft, their pulses would produce
false ballistic missile trajectories, or “ghost tracks.”101
From a normal accidents viewpoint, this situation
was relatively unpredictable, and it would have been
difficult to uncover in the development process.

However, other elements of the Patriot accidents
were more preventable. The “ghost tracks” issue was
not relevant to the Tornado incident or the U.S. F-16
engagement on the Patriot. Most of the Patriot’s identi-
fication of friend or foe shortcomings were well-known
to both system operators and pilots, who feared flying
in airspace tracked by Patriots due to the frequen-
cy with which the radar systems would lock on to
their aircraft.102 For example, as Paul Scharre points
out, the risk that Patriots would mistake aircraft for
anti-radiation missiles “had been identified during
operational testing but had not been corrected and
were not included in operator training.”103

Other factors in this case also illustrate the high
reliability organizations approach’s utility and draw-
backs. The Patriot crews were relatively inexperi-
enced and overly reliant on automated outputs.104 In
its investigation of the Patriot fratricides, the Defense
Science Board task force recommended that opera-
tors gain more autonomy over firing decisions. “The
solution here will be more operator involvement and
control in the functioning of a Patriot battery,” the
task force report states.105 Failing to satisfy critical

features of a high reliability organization, Patriot
unit operators tended to lack the know-how needed
to bypass established practices in order to avoid
disaster in high-pressure situations.106

Still, regarding the Patriot accidents, high relia-
bility organizations theory’s explanatory power is
limited in two ways. First, it is unlikely that even
more experienced operators would have been able
to substantially reduce accident risks. The Patriot’s
identification of friend or foe problems meant that
operators would have very little time and information
to override the system’s classifications.107

Second, the high reliability organizations approach
neglects the need for operator feedback earlier in the
system development process. A more iterative develop-
ment process could have alerted designers and contrac-
tors to the need for targeting algorithms that could be
adapted to the prevailing missile threats that operators
would encounter in a given operating environment.108
Instead, the U.S. Army and Raytheon “committed to a
system concept that demonstrate[d] patterns of per-
formance unreliability,” leaving it to the operators to
deal with the additional risks.109 In this sense, the focus
on operator adaptability points toward an
end-of-pipe solution, whereas the software
development lifecycle approach controls
risk from the source.

The above evidence suggests that the
Patriot’s safety issues are deeply em-
bedded in the military’s acquisition ap-
proach for software-intensive systems.
In response to the Patriot fratricides, the
military implemented software upgrades
and adjusted human-machine interfaces
to help operators adapt to new systems.
Yet, these reforms leave unresolved the underlying
problems with how the military, in partnership with
Raytheon and other contractors, acquires and de-
velops systems like the Patriot.

USS McCain and Alnic MC Collision

On Aug. 21, 2017, the U.S. Navy destroyer John S.
McCain made a sudden turn to port and uninten-
tionally struck the Alnic MC, a Liberian-registered oil

106 An organization’s learning orientation is another key characteristic of HROs. In this case, there is evidence that the Army did not learn from
Patriot deficiencies in the first Gulf War. Postol, “Lessons of the Gulf War Experience with Patriot.”

107 Ministry of Defence, “Aircraft Accident to Royal Air Force Tornado GR MK4A ZG710.”

108 Bode and Watts, “Meaning-Less Human Control,” 55.

109 Hawley, “Patriot Wars.”

110 Miller et al., “The Navy Installed Touch-screen Steering Systems to Save Money.”

111 S.C. Mallam, K. Nordby, S.O. Johnsen, and F.B. Bjørneseth, “The Digitalization of Navigation: Examining the Accident and Aftermath of U.S.
Navy Destroyer John S. McCain,” Proceedings of the Royal Institution of Naval Architects Damaged Ship V, 2020, 57.

112 National Transportation Safety Board, “Collision between U.S. Navy Destroyer John S. McCain and Tanker Alnic MC Singapore Strait, 5 Miles
Northeast of Horsburgh Lighthouse August 21, 2017,” 2019, https://www.ntsb.gov/investigations/AccidentReports/Reports/MAR1901.pdf, 33.

tanker, off the coast of Singapore and Malaysia, east
of the Strait of Malacca. About an hour earlier, the
destroyer’s commanding officer, Alfredo J. Sanchez,
switched the “Integrated Bridge and Navigation Sys-
tem” to backup mode, setting off a series of mistakes
that caused the hard turn. Ten U.S. Navy sailors
died because of the collision, making it the Navy’s
deadliest accident in four decades.110

A number of investigations into the collision point-
ed to design flaws in the McCain’s navigation system
as playing a major role in the accident. First, in its
backup mode, the system allowed crew from dif-
ferent parts of the ship to take charge of steering,
which led to confusion over which station had thrust
control for different propellers. Second, for steering
commands, the system only provided touch-screen
controls, as opposed to mechanical throttles that
give more tactile feedback to operators.111 As the
National Transportation Safety Board’s investiga-
tion concludes, “The design of the John S. McCain’s
touch-screen steering and thrust control system
increased the likelihood of the operator errors that
led to the collision.”112

To be sure, issues with the integrated bridge and
navigation system development process could have
been partially mitigated by improved decision-making
on the day of the collision or better training in the
months before. Ultimately, however, these design
flaws were rooted in the proclivity of system design-
ers to automate and digitalize navigation functions
without sufficient attention to the needs of operators.
According to operators interviewed in the Navy’s
investigation, they regularly disabled the system’s
touch screen to avoid accidental rudder changes and

Ultimately, however, these design
flaws were rooted in the proclivity

of system designers to automate
and digitalize navigation functions
without sufficient attention to the

needs of operators.

The Scholar Machine Failing: How Systems Acquisition and Software Development Flaws Contribute to Military Accidents

25 26

ignored fault notifications due to displays that were
difficult to interpret.113 Notably, efforts to modernize
the system did not involve consultation with the
Navy’s own experts on human factors engineering.114

It was only after the McCain collision that the
Navy recognized the need for stronger feedback
loops between operators and software developers.
Prompted by an internal review, the Navy surveyed
surface ship crews about the navigation system.
One striking finding — “the number-one feedback
from the fleet” according to the program executive
officer for ships, Rear Adm. Bill Galinis — was that
operators “overwhelmingly” preferred mechanical
controls over touch-screen systems.115 The initial
development of the navigation system lacked this
type of participatory input, in which end-user per-
spectives are incorporated into the design of new
technology.116 As Eric Lofgren, an expert on defense
acquisition, states, “Such an advanced bridge/nav-
igation system should probably first been tried on
smaller ships with continuous user feedback, tested
extensively, iterated, then progressively scaled up to
larger and more complex ships.”117 In line with soft-
ware development lifecycle theory, these problems
extended back almost a decade of software acquisi-
tion and development to 2008, when the Navy first
announced a contract with Northrop Grumman to
build the integrated bridge and navigation system.118

Insights from normal accidents and high reliability
organizations theories also bear on this case. Regarding
the former, some of the navigation system’s issues
stemmed from adding unnecessary complexity, in-
cluding the ability to transfer thrust control for each
of the ship’s two propellers.119 Moreover, the accident
happened in one of the world’s most congested wa-
terways, an environment ripe for unexpected inter-
actions in which one misstep could easily lead to a

113 U.S. Fleet Forces Command, “Comprehensive Review of Recent Surface Forces Incidents.”

114 U.S. Fleet Forces Command.

115 Megan Eckstein, “Navy Reverting DDGs Back to Physical Throttles, After Fleet Rejects Touchscreen Controls,” USNI News (blog), August 9,
2019, https://news.usni.org/2019/08/09/navy-reverting-ddgs-back-to-physical-throttles-after-fleet-rejects-touchscreen-controls.

116 Mallam et al., “The Digitalization of Navigation.”

117 Eric Lofgren, “Is Poor Software Design/Testing the REAL Cause of the USS McCain Crash?” Acquisition Talk (blog), December 25, 2019,
https://acquisitiontalk.com/2019/12/is-poor-software-design-testing-the-real-cause-of-the-uss-mccain-crash/.

118 Miller et al., “The Navy Installed Touch-screen Steering Systems to Save Money.”

119 Mallam et al., “The Digitalization of Navigation.”

120 Miller et al., “The Navy Installed Touch-screen Steering Systems to Save Money”; Mallam et al., “The Digitalization of Navigation.”

121 U.S. Fleet Forces Command, “Comprehensive Review of Recent Surface Forces Incidents.”

122 Mallam et al., “The Digitalization of Navigation,” 57; U.S. Fleet Forces Command, “Comprehensive Review of Recent Surface Forces Incidents.”

123 Joseph Aucoin, “It’s Not Just the Forward Deployed,” U.S. Naval Institute Proceedings, April 2018, https://www.usni.org/magazines/proceed-
ings/2018/april/its-not-just-forward-deployed; Aaron Rowen, Martha Grabowski, and Dale Russell, “The Impact of Work Demands and Operational
Tempo on Safety Culture, Motivation and Perceived Performance in Safety Critical Systems,” Safety Science 155 (November 1, 2022): 105861,
https://doi.org/10.1016/j.ssci.2022.105861.

124 National Transportation Safety Board, “Collision between U.S. Navy Destroyer John S. McCain and Tanker Alnic MC Singapore Strait.”

catastrophe.120 Applied to this case, normal accidents
theory holds that incidents like the McCain collision
are inevitable as long as the Navy relies on navigation
systems that are highly complex and tightly coupled.

However, normal accidents theory does not fully
capture some of the key aspects of the McCain ac-
cident. For starters, not all the design issues with
the navigation system can be reduced to unexpected
interactions and insufficient slack between various
components. For instance, automated bridge sys-
tems equipped with improved indicators and alarms
should produce looser coupling by giving the crew
more time to correct issues that arise. Yet, the McCain
crew ignored these alert systems because the display
area was densely packed and difficult to interpret
— the product of not incorporating operator needs
into the design process.121 Furthermore, many of the
navigation system’s complications were neither novel
nor unexpected, as presumed by normal accidents
theory, but rather predictable. The replacement of
mechanical throttle with touch-screen controls, for
example, conflicted with user-centered design prin-
ciples held by the Navy’s own human factors engi-
neering team and Department of Defense standards.122

Some of the lessons from high reliability organiza-
tions also pertain to the McCain case. Forward-de-
ployed naval forces in the Western Pacific faced high
operational tempo and staffing shortages, which
resulted in long shifts and inadequate rest.123 This
affected the crew’s attention to detail and reaction
time, undermining the ability to take safety measures.
Indeed, the National Transportation Safety Board’s
review found that the bridge watchstanders were
“acutely fatigued at the time of the accident.”124 An-
other critical aspect of high reliability organizations
is the high experience level of operators. In this case,
post-accident investigations highlighted that the crew

lacked sufficient training on the navigation system.125

While high reliability organization theory spotlights
how the McCain crew could have better managed
deficiencies in the navigation system, this approach
does not account for why the system was developed
to be accident-prone in the first place. In-depth in-
vestigations of the McCain collision called attention
to poor technical documentation for the system,
which would have even hampered the ability of a
highly reliable organization to make safety adapta-
tions.126 In part because he could not understand
some of the system’s automated functions in sea
trials, the McCain’s commander grew accustomed
to operating the navigation system in backup mode,
which removed built-in safeguards.127 Contrary to the
expectations of high reliability organizations theory,
which regard the ability of operators to circumvent
certain procedures as a benefit to system safety, in
this case, such a move enhanced the risk of accidents.

Following the accident, the Navy dismissed the
ship’s top officers for failing to properly manage
the navigation system in the critical minutes before
the collision, while the organizations and officials
responsible for software development were not held
accountable. In August 2019, the Navy announced that
it would continue to work with Northrop Grumman
to develop more basic touch-screen controls and add
physical throttles to the system. Yet, there has been no
evidence that this redesign process will incorporate
input from end-users.128 As the software development
lifecycle approach suggests, without this fundamental
change in the connections between the organizations
that procure and develop the software, accidents like
the McCain collision will continue to occur.

125 U.S. Fleet Forces Command, “Comprehensive Review of Recent Surface Forces Incidents”; National Transportation Safety Board, “Collision
between U.S. Navy Destroyer John S. McCain and Tanker Alnic MC Singapore Strait.”

126 This section benefited from Ralph Soule’s discussion of HRO theory’s implications for the McCain case in his blog, available here: https://
www.ralphsoule.com/blog/tag/HRO_JSM.

127 Advice from two other captains helped him make this decision. Miller et al., “The Navy Installed Touch-screen Steering Systems to Save Money.”

128 James A. Malachowski, “Robots and Rogue Thinkers: Leveraging Organizational Learning Theory to Prevent Catastrophic Failure After Rapid
Fielding of Disruptive Technology,” Naval War College, 2020; Director, Operational Test & Evaluation, “FY 2023 Annual Report,” Department of
Defense, January 2024, https://www.dote.osd.mil/Portals/97/pub/reports/FY2023/other/2023annual-report.pdf, 148–51.

129 Michael D. Shear, Annie Karni, and Eric Schmitt, “Afghanistan, Biden and the Taliban: Biden Says U.S. Is on Track to Finish Evacuation by
Deadline,” The New York Times, August 24, 2021, https://www.nytimes.com/live/2021/08/24/world/afghanistan-taliban-kabul-news.

130 Richard Blumenstein, “Kessel Run’s C2IMERA Used during Afghan Evacuation,” Air Combat Command, September 23, 2021, https://www.
af.mil/News/Article-Display/Article/2787545/#:~:text=%E2%80%9CKessel%20Run's%20C2IMERA%20application%20served,logistics%20and%20
NEO%20support%20information.

131 Damany Coleman, “Kessel Run’s SlapShot Saves Lives,” Air Force Life Cycle Management Center (blog), September 28, 2021, https://www.
aflcmc.af.mil/NEWS/Article-Display/Article/2791602/.

132 Blumenstein, “Kessel Run’s C2IMERA Used during Afghan Evacuation.” This matches evaluations of Kessel Run by the U.S. Air Force leaders
to the Senate Armed Service Committee, in which they cited the lab’s performance in discovering design flaws earlier in the development process;
https://www.armed-services.senate.gov/imo/media/doc/Wilson_04-04-19.pdf.

133 Alex Horton and Dan Lamothe. “Inside the Afghanistan Airlift: Split-Second Decisions, Relentless Chaos Drove Historic Military Mission,” Wash-
ington Post, September 28, 2021, https://www.washingtonpost.com/national-security/2021/09/27/afghanistan-airlift-inside-military-mission/.

134 Brian Beachkofski, “Making the Kessel Run,” Air & Space Forces Magazine (blog), March 23, 2022, https://www.airandspaceforces.com/
article/making-the-kessel-run/.

Kessel Run Software and the
Afghanistan Withdrawal

Amid the Taliban’s swift takeover of Afghanistan in
August 2021, the United States and its allies and partners
scrambled to evacuate foreign citizens and some Afghan
citizens from the country before the Biden adminis-
tration’s planned withdrawal deadline of Aug. 31.129 To
manage the complicated evacuation process from the
Hamid Karzai International Airport in Kabul — in all,
more than 120,000 people were flown out — the U.S.
Air Force relied on a software tool to plan out the exact
time slots for arrivals and departures.130 Developed by
Kessel Run, the Air Force’s own software factory, the
planning software played a major role in the largest
noncombatant evacuation in U.S. military history.131 Lt.
Gen. Greg Guillot, who led the mission as the Air Forces
Central commander, stated that Kessel Run’s software
“served as a reliable, adaptable tool as we planned and
executed this complex, historic operation.”132

What accounts for the safe and reliable perfor-
mance of Kessel Run’s software in the Afghanistan
evacuation? This outcome cannot be fully anticipated
by the high reliability organizations and normal ac-
cidents frameworks. The operation, a chaotic 17-day
sprint that required an immense surge of Air Force
aircraft and crew, could not benefit from the contin-
uous learning existent in high reliability organiza-
tions.133 In addition, the evacuation’s complexity had
increased the number of missions beyond the point
that the software was designed to accommodate. The
compressed timeline meant that on-the-fly patches
were required to deal with software outages.134

In line with the expectations of software develop-
ment lifecycle theory, Kessel Run’s software devel-
opment model was critical to the airlift planning sys-

The Scholar Machine Failing: How Systems Acquisition and Software Development Flaws Contribute to Military Accidents

27 28

tem’s ability to limit the risk of accidents. Accounting
for this outcome necessitates an understanding of
Kessel Run’s iterative software engineering process,
under which planning tools like the one used in the
evacuation were developed around cycles of exper-
imentation with significant user feedback and test-
ing.135 This approach starkly differs from the software
modernization effort that Kessel Run replaced, the
“AOC 10.2” program initially awarded to Lockheed
Martin in 2006, which had limited engagement with
end-users even a decade after software requirements
were established.136

The importance of this adaptable approach was
validated by Kessel Run’s response to a software
outage, prompted by the planning tool’s intermittent
loading issues as it struggled to accommodate the ex-
ponential growth in the number of flights demanded
by the evacuation. During the mission, the U.S. mili-
tary planned and directed 2,627 flights. At one point,
half of the Air Force’s C-17 transport planes were
dedicated to the effort.137 In the span of 12 hours, the
Kessel Run team implemented a number of technical
fixes that incorporated feedback from end-users in
the air operations center.138 According to one Kessel

135 Phil Budden et al., “Kessel Run: An Innovation Opportunity for the U.S. Air Force.” MIT Mission Innovation Working Paper, May 2021.

136 Beachkofski, “Making the Kessel Run.”

137 Horton and Lamothe, “Inside the Afghanistan Airlift.”

138 Beachkofski, “Making the Kessel Run.” The technical fixes involved adding more compute instances and compressing the number of missions
into more compact visual displays.

139 Coleman, “Kessel Run’s SlapShot Saves Lives.”

140 Interview with Brian Beachkofski, April 10, 2023. This “big bang” release approach is a common byproduct of the waterfall model.

141 Paul DeLuca et al., “Assessing Aegis Program Transition to an Open-Architecture Model,” RAND, 2013, https://apps.dtic.mil/sti/citations/
ADA583571. Additionally, Kessel Run now assists the F-22 and F-35 program offices, which govern some of the military’s largest procurement
programs. Budden et al., “Kessel Run: An Innovation Opportunity for the U.S. Air Force”; Pomerleau, Mark. “Air Force Software Tool Helped Coor-
dinate Afghanistan Evacuation of Civilians.” C4ISRNet, September 23, 2021. https://www.c4isrnet.com/battlefield-tech/c2-comms/2021/09/23/
air-force-software-tool-helped-coordinate-afghanistan-evacuation-of-civilians/.

142 Nancy Leveson, “An Engineering Perspective on Avoiding Inadvertent Nuclear War,” NAPSNet Special Reports, July 26, 2019, https://nautilus.
org/napsnet/napsnet-special-reports/an-engineering-perspective-on-avoiding-inadvertent-nuclear-war/.

Run engineer, this adaptation was suc-
cessful because the team could “dry-run
the changes they were making in a sort of
digital staging area, while liaison officers
— with literally the boots-on-the-ground,
in some cases — could communicate with
end users to fully realize their immediate
needs.”139 As Brian Beachkofski, who led
Kessel Run during the evacuation, notes,
if this system was developed with a “big
bang” release, in which end-users do not
engage with the software until after the
big product delivery event, this on-the-
fly technical adaptation would have been
impossible.140

While the first three case studies serve
as the main test ground for software de-
velopment lifecycle theory’s expectations
of how organizational structures for soft-

ware development contribute to military accidents,
evidence from Kessel Run demonstrates how itera-
tive software development practices can reduce the
risk of mishaps. Some qualifying factors should be
considered. Kessel Run’s safety benefits were limited
to one specific mission, not proven across years of
operations. Fortunately, this type of long-term analy-
sis may be more feasible in the future, since the U.S.
military is transitioning major combat systems like
the Aegis to more continuous software development
practices.141 In this operation, the consequences of a
software mishap were different than the three other
cases examined here because a mishap could have
resulted in a plane taking off without having aerial
refueling support, which could have resulted in the
plane being forced to land in a place that would not
accept the passengers. For systems where the stakes
are high, such as nuclear command and control, a
continuous delivery approach that eschews software
requirements specification may not be the most ap-
propriate approach.142

Conclusions and Implications for
Policymakers

The international relations discipline has largely
spurned the study of accidents, possibly because
they tend to be seen as random events that cannot be
explained by general causes.143 In this line of thinking,
civilian casualties are tragic but inevitable costs of
warfare; friendly fire incidents are unfortunate, but
it would be pointless to try to identify their common
determinants. By contrast, this article maintains that
a science of accidents is possible.

By centering the system acquisition and develop-
ment process, I have explained and demonstrated how
software technologies contribute to military accidents.
When military software development follows a “wa-
terfall” approach, in which input from operators is
limited to the final stages of testing and deployment,
many safety hazards will only be revealed after it is
too late to rework system designs. Under this model of
software development, the risk of accidents is elevated.
Conversely, when the software development process
allows for early feedback from military operators dur-
ing system design and requirements specification,
confusing interface designs and other human-machine
interaction problems can be mitigated.

This article makes two main interventions in the
literature on complex technological systems and
military accidents. First, studies of military accidents
have primarily tapped into two wells of organizational
scholarship, the high reliability organization and
normal accident approaches, on managing hazardous
technologies. By focusing on breakdowns in complex
technologies and military organizations in the critical
seconds and minutes of a crisis, applications of these
two theories neglect the processes that occur before
militaries field technological systems: acquisition
and development. In extending the causal timeline
of military accidents beyond decisions made on the
battlefield to those made decades earlier in software
design and development, software development life-
cycle theory presents an alternative way to explain
how software contributes to military accidents.

My aim is not to devalue the contributions of the nor-
mal accident and high reliability organization theories
to the study of safety in military systems. These two
approaches have introduced important concepts like
coupling and complexity, and they have underlined the

143 Owens, “Accidents Don't Just Happen.”

144 Leveson et al., “Moving Beyond Normal Accidents and High Reliability Organizations.”

145 I thank Josh Rovner for his helpful advice on this section.

146 Schoeni, “Long on Rhetoric, Short on Results.”

147 Jonathan Panter and Jonathan Falcone, “The Unplanned Costs of an Unmanned Fleet,” War on the Rocks (blog), December 28, 2021, https://
warontherocks.com/2021/12/the-unplanned-costs-of-an-unmanned-fleet/.

148 Lapham et al., “Considerations for Using Agile in DOD Acquisition.”

impact of safety culture and organizational structure
on accidents.144 They have also broadened the notion
of software failure, beyond the inability of code to meet
performance specifications, to encompass problems
linked to interactions between software systems and
surrounding structures and organizations. In fact,
this article demonstrates that the politics of software
acquisition can both feed into the problem of normal
accidents and inhibit organizations from achieving
high reliability. As the case studies illustrated, the
software development process can be the reason why
militaries field highly complex, tightly coupled systems
in the first place. Likewise, limited feedback channels
between software designers and military operators
can inhibit the risk mitigation practices characteristic
of high-reliability organizations.145

Second, for policymakers seeking to reduce the risk of
accidents involving military AI applications, this article
points toward reforms to defense software acquisitions
as one effective pathway to produce safer systems. This
directly contradicts the notion that the waterfall mod-
el’s top-down nature and strict requirements enhance
safety, which is a viewpoint held by some Department
of Defense project managers.146 This article’s historical
lessons should also amplify calls of other researchers on
the benefits of agile software development for making
military systems more resilient to problems that arise
from human-machine teaming. A 2021 War on the Rocks
piece, for instance, partly attributed design flaws in the
U.S. Navy’s littoral combat ship to a waterfall project
management approach.147

Given the bureaucratic and political forces that often
resist acquisition reforms, the Defense Department’s
recent championing of agile software development —
often framed in the context of improving efficiency, not
safety — should be treated with skepticism. According
to a Software Engineering Institute assessment, there
is a significant mismatch between the department’s
rhetorical embrace of agile methods and its actual
adoption of such practices.148 Without interventions
that account for bureaucratic inertia and prime con-
tractors’ vested interests in maintaining waterfall
methods, military AI systems may replicate the safety
risks of past software-intensive systems.

Indeed, this article puts forward that lessons from
the development of automation software in older
military systems can directly apply to managing
emerging technology risks. Revisiting near–nuclear

While the first three case studies
serve as the main test ground for
software development lifecycle
theory’s expectations of how
organizational structures for
software development contribute
to military accidents, evidence
from Kessel Run demonstrates
how iterative software
development practices can
reduce the risk of mishaps.

The Scholar Machine Failing: How Systems Acquisition and Software Development Flaws Contribute to Military Accidents

29 30

confrontations in the Cold War, a 2022 Bulletin of
the Atomic Scientists essay warned, “Today, arti-
ficial intelligence, and other new technologies, if
thoughtlessly deployed could increase the risks of
accidents and miscalculation even further.”149 In these
discussions, both scholars and policymakers often
gravitate toward “novel” risks, such as those linked
to increased speed of decision-making. To be sure,
there are many ways that AI systems today differ from
the software of old.150 And, certainly, investigating
those unique features will uncover useful insights
into understanding how AI will affect military acci-
dents. At the same time, there is much to be learned
from historical cases of software-intensive military
systems. After all, new technologies cannot so easily
escape deep-rooted problems.

Jeffrey Ding is an Assistant Professor of Political
Science at George Washington University. He is the
author of Technology and the Rise of Great Powers
(Princeton University Press, 2024).

Acknowledgments: The author wishes to thank

Markus Anderljung, Noemi Dreksler, Ben Garfinkel,
Julie George, Joshua Rovner, Scott Sagan, Toby Shev-
lane, Eoghan Stafford, Sanne Verschuren, Baobao
Zhang, participants at an International Studies As-
sociation panel, the anonymous reviewers, and es-
pecially Allan Dafoe, Jacquelyn Schneider, and Rick
Landgraf, for their helpful feedback and suggestions.
This project also benefited from support of Stanford
University’s Center for International Security and
Cooperation and Stanford’s Institute for Human-Cen-
tered Artificial Intelligence.

Image: U.S. Navy photo by Mass Communication
Specialist 2nd Class Joshua Fulton151

149 Christian Ruhl, “Sixty Years after the Cuban Missile Crisis, How to Face a New Era of Global Catastrophic Risks,” Bulletin of the Atomic Scientists
(blog), October 13, 2022, https://thebulletin.org/2022/10/sixty-years-after-the-cuban-missile-crisis-how-to-face-a-new-era-of-global-catastrophic-risks/.

150 For an overview of unique safety issues with AI systems built using machine learning and reinforcement learning techniques, see Dario Amo-
dei et al., “Concrete Problems in AI Safety,” arXiv Preprint arXiv:1606.06565, 2016.

151 For the image, see https://www.dvidshub.net/image/3692032/uss-john-s-mccain-arrives-changi-naval-base.

