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How does software contribute to military accidents? The stakes are 
high. During the Cold War, computerized early warning systems produced 
“near-miss” nuclear crises. In the future, military AI applications could 
fail with devastating consequences. To illuminate the causes of military 
accidents, existing studies apply “normal accidents” and “high reliability 
organizations” theories. While these frameworks are helpful, they neglect 
the military’s system acquisition process, which often outsources software 
development to contractors and limits input from military end-users. By 
contrast, the software development lifecycle theory expands the causal 
timeline of accidents beyond decisions made on the battlefield to those 
made decades earlier in software design, serving as an antecedent account 
of how software contributes to military accidents. Illuminating dynamics 
overlooked by the two dominant approaches, this theory is supported 
by four cases: the 1988 USS Vincennes shootdown of an Iranian airliner; 
the 2003 Patriot fratricides; the 2017 USS McCain collision; and software 
upgrades in the 2021 Kabul airlift.
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On Aug. 21, 2017, the USS John McCain crashed 
into an oil tanker near the Strait of Malac-
ca, resulting in the death of 10 sailors and 
marking the Navy’s worst accident in four 

decades. While the Navy initially blamed the incident 
on the McCain’s crew, later investigations pointed out 
problems with the ship’s navigation software.1 In fact, 
the Navy’s own review of the crash stated, “There is 
a tendency of designers to add automation … without 
considering the effect to operators who are trained 
and proficient in operating legacy equipment.”2 

Safety-critical software systems come with high 
stakes. At present, maritime forces rely on navigation 

software like the one used on the McCain, and an 
accident at sea could be one of the most likely trig-
gers of a military conflict between the United States 
and China.3 During the Cold War, accidents involv-
ing computerized early warning systems produced 
numerous “near-miss” nuclear crises. In the future, 
military systems that incorporate new advances in 
AI and other emerging technologies could also fail, 
bringing devastating consequences.4 

How does software contribute to the risk of military 
accidents? Existing scholarship on the safety risks 
of military technology systems draws on debates 
between normal accidents theory and high relia-
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as an illustration, the failure of a Patriot missile de-
fense system to intercept a Scud missile that struck 
a U.S. barracks at Dhahran, Saudi Arabia, in the last 
days of the Gulf War. The missile’s impact caused the 
deaths of 28 soldiers, more than one-third of all U.S. 
servicemembers killed in the war.11 Army investigators 
attributed the breakdown to a timing error in the 
computer software designed by Raytheon. Long, con-
tinuous operation led to loss of precision in tracking 
incoming missiles. Crucially, technical specialists were 
aware of the issue and had even developed a software 
patch, but the upgrade was not prioritized because 
they discounted the possibility that operators would 
keep the computer running for long periods without 
a reboot.12 The accident was not “normal” — despite 
tight coupling and complexity, the cause was well 
understood, and a fix was available. Nor 
could it have been prevented by the Army 
improving its organizational culture and 
structure. The computer malfunction was 
a product of a considerable disconnect 
between Army users and software contrac-
tors in the Patriot’s development process.

This theory is supported with four case 
studies: the 1988 Vincennes incident, in 
which a U.S. naval ship accidentally shot 
down an Iran Air civilian airliner; the 2003 
Patriot fratricides at the beginning of the 
U.S. war in Iraq; the 2017 USS McCain collision; and 
software performance in the 2021 Kabul evacuation. 
In each case, the choices about software develop-
ment by senior procurement officials and defense 
contractors were central to how software contributed 
to accident risks. This is not to say that human error 
played no part; rather, the way in which these military 
systems were developed set end-users up to fail.

This article makes two main contributions. First, 
scholarship on military accidents has been preoccu-
pied with the clash between the normal accidents and 
high reliability organization frameworks. Since Scott 
Sagan’s formative application of these frameworks 
to nuclear command and control accidents, this lit-
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erature has seen very few theoretical innovations.13 
Departing from the normal accidents/high reliability 
organization dichotomy, this article presents a novel 
approach to exploring the sources and limits of safety 
in military technology systems. In doing so, it connects 
political science scholarship to a shift in the systems 
engineering, human-computer interaction, and risk 
management fields, all of which increasingly empha-
size the need for “moving beyond normal accidents 
and high reliability organizations.”14 By focusing on 
participation by end-users in software development, 
software development lifecycle theory builds on recent 
scholarship on the military adoption of automated 
technologies, which underlines the significance of 
tactical-level operators’ trust in new innovations.15

Second, this article has direct implications for the 
risks of emerging technologies such as AI. In recent 
years, leading scholars and policymakers have likened 
the safety hazards of autonomous military systems 
to the Cold War’s nuclear close calls, many of which 
were linked to false alarms produced by technolog-
ical systems.16 For example, Michael C. Horowitz, a 
University of Pennsylvania professor who serves as 
the director of the Department of Defense’s Office 
of Emerging Capabilities Policy, reexamined the Cu-
ban Missile Crisis with autonomous naval ships in 
the mix, giving significant attention to the accident 
risks of uncontrollable systems.17 These analyses 
appropriately highlight specific features of AI-ena-

bility organizations theory.5 The normal accidents 
approach argues that the causes of accidents in highly 
complex and tightly coupled technological systems 
are deeply embedded in the systems themselves. 
Tightly coupled systems require centralized author-
ity because small mishaps can rapidly escalate into 
major disasters, but problems in complex systems 
demand responses by local decision-makers who 
understand how the system works. The tension be-
tween these two imperatives results in unavoidable 
accidents.6 Under normal accidents theory, accidents 
are inevitable in software-intensive military systems 
because they are very complex and tightly coupled. 
For instance, one expert on AI governance predicts 
that normal accident problems will be “particularly 
acute in military AI applications.”7 

The high reliability organizations literature, in con-
trast, posits that certain organizations can effectively 
manage the risks of hazardous technologies. Studies 
in this tradition emphasize the importance of organ-
izational culture, such as deference to expertise and 
dedication to learning from failures, as well as flexi-
ble organizational structures that permit authority 
to be centralized and decentralized depending on 
the situation.8 As evidenced by studies of the U.S. 
Navy’s nuclear aircraft carrier community and subma-
rine community, certain military organizations have 
demonstrated excellent safety records with complex, 
interdependent technology systems.9 Scholars have 
proposed the high reliability organizations model as 
a way to manage the risks of autonomous weapons.10
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Strategic Studies 47, no. 2 (January 24, 2023): 1–23, https://doi.org/10.1080/01402390.2022.2164570. On other contextual factors that shape the risks 
of accidents, see Ingvild Bode, “Practice-Based and Public-Deliberative Normativity: Retaining Human Control over the Use of Force,” European Journal 
of International Relations, April 10, 2023, https://doi.org/10.1177/13540661231163392; Patricia Owens, “Accidents Don’t Just Happen: The Liberal Politics 
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dents in the Weaponization of Increasingly Autonomous Technologies,” UNIDIR Resources 5 (2016); Scharre, “Autonomous Weapons and Operational 
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from Chinese Universities 13, no. 1 (February 1, 2019): 1–3, https://doi.org/10.1007/s11704-018-8900-4; Scharre, “Autonomous Weapons and Opera-
tional Risk,” 51.

To be sure, these two approaches have produced 
valuable insights on the causes of military accidents. 
Yet, the applications of normal accident and high 
reliability organizations theories to software-inten-
sive military systems share a drawback: their scope 
of analysis is confined to the actions of military or-
ganizations only after software systems have been 
fielded. This means that they neglect the initial phase 
of software acquisition and development — when 
critical safety decisions are made. It also means that 
the existing literature does not account for the ac-
tivities of the defense contractors that develop most 
of the military software. 

Taken together, these considerations point to the 
importance of the military’s software acquisition 
process. If this process limits feedback from mili-
tary operators to end-stage testing and evaluation 
(e.g., linear “waterfall” models), when it is too late 
to change fundamental system designs, accidents 
are more likely. These acquisition pathways often 
yield confusing human-machine interfaces and limit 
adaptability to hidden vulnerabilities that emerge 
from operators using the system in the field. In this 
article, I propose software development lifecycle 
theory as an alternative way to explain how software 
contributes to military accidents.

By focusing on patterns of software procurement 
and development, software development lifecycle 
theory sheds light on causal factors that affect military 
accidents often overlooked by the normal accident and 
high reliability organizations perspectives. Consider, 
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bled military applications, such as enhanced levels 
of autonomy, but they gloss over the simple fact that 
these applications will be implemented as software 
programs.18 While AI will bring novel risks, learning 
from past software-intensive military systems should 
serve as a foundation for comprehending the risks 
of military AI applications.

The article proceeds as follows. It first outlines my 
argument about how software development practices 
influence the risk of military accidents. Next, the article 
explains the empirical method by distilling each of 
the three theories’ expectations about the impact of 
software technology on military safety. Evaluations 
of the Vincennes, Patriot, and McCain cases trace the 
sources of these accidents back to the initial software 
requirements phase and the weak ties between soft-
ware developers and military operators. In addition, 
evidence from the Afghanistan evacuation’s use of 
Kessel Run19 software further supports my theory by 
showing that an iterative approach to software devel-
opment can reduce safety risks. The article concludes 
by discussing broader implications and policy recom-
mendations, including defense software acquisition 
reforms that shift away from waterfall models and 
toward more agile approaches.

Software Development Lifecycle

How does software affect military accidents? Typ-
ically, a software failure is defined as the inability 
of code to meet performance requirements. When 
post-accident investigations assign blame to the crew 
by noting that software systems performed flawless-
ly — as was the case with the Navy’s report on the 
McCain crash — they rely on this narrow definition 
of software failure. In contrast, the normal accidents 
and high reliability theories emphasize that software 
can contribute to accidents, even when it performs 
how it is supposed to, by influencing the connected 

18  One exception is Schneider and Macdonald, “Looking Back to Look Forward,” which discusses the impact of different acquisition strategies on 
managing the risks of autonomous systems, including operational trade-offs between control/safety and cost.

19  Kessel Run is a U.S. Air Force organization that develops command and control and targeting software capabilities. See https://kesselrun.af.mil.

20  Veronica L. Foreman, Francesca M. Favaró, Joseph H. Saleh, and Christopher W. Johnson, “Software in Military Aviation and Drone Mis-
haps: Analysis and Recommendations for the Investigation Process,” Reliability Engineering & System Safety 137 (May 1, 2015): 102, https://
doi.org/10.1016/j.ress.2015.01.006; Scott Shappell and Douglas Wiegmann, “The Human Factors Analysis and Classification System—HFACS,” 
Embry-Riddle Aeronautics University Publications, February 1, 2000, https://commons.erau.edu/publication/737. The human factors analysis and 
classification system, used by the U.S. military for aviation accident investigations, also considers human errors as a product of broader organiza-
tional influences. I thank an anonymous reviewer for raising this point.

21  Perrow, Normal Accidents; Sagan, The Limits of Safety.

22  Another coincidence that no one could have reasonably predicted was that the last block of sequential numbers on messages coming into the mul-
tiplexor of the system computer (the 427M) had been “001” and the first block of numbers in the mistakenly inserted training data was “002.” Aerospace 
Defense Command, “History of ADCOM/ADC, 1 January–31 December 1979,” n.d., Secret, excerpts, excised copy January 1, 1980, newly declassified.

23  LaPorte and Consolini, “Working in Practice but Not in Theory.”

24  Roberts, Rousseau, and La Porte, “The Culture of High Reliability”; Scharre, “Autonomous Weapons and Operational Risk.”

25  Leveson et al., “Moving Beyond Normal Accidents and High Reliability Organizations,” 228. For a similar argument in a very different policy 
area, see Susanna P. Campbell, Global Governance and Local Peace: Accountability and Performance in International Peacebuilding (Cambridge: 
Cambridge University Press, 2018), https://doi.org/10.1017/9781108290630.

structures and organizations tasked with manag-
ing hazardous technologies.20 These two prevailing 
organizational theories of safety in technological 
systems, therefore, offer a broader conception of 
software failure in military accidents. 

The first approach contends that normal accidents 
occur in software-intensive military systems due 
to tightly coupled and highly complex structural 
elements. When problems — even seemingly trivial 
ones — arise in systems in which many events hap-
pen simultaneously and interact with each other, it 
is difficult for managers and operators to identify 
fixes.21 Even if software works as coded, novel and 
unexpected interactions between battlefield condi-
tions and such systems can snowball into unavoidable 
crises. For instance, in a 1979 false alert involving 
missile warning computers, the United States initi-
ated retaliation measures based on mistaken reports 
of a major Soviet nuclear attack. This “near-miss” 
was produced by coincidences that would have been 
difficult to reasonably predict, including the insertion 
of training tape data at the same time as a momentary 
circuit failure in a ground station.22

The second approach, rooted in high reliability or-
ganizations, also posits that accidents in software-in-
tensive military systems are rooted in the organiza-
tional structures that manage these systems. High 
reliability organization scholars claim that certain 
organizations can reliably prevent system accidents 
if they maintain certain qualities, such as deference 
to experienced operators, devotion to learning from 
failures, and commitment to safety.23 Studies of the 
U.S. nuclear Navy, for instance, have highlighted the 
experience level of operators and cultural commit-
ments to safety.24 Notably, the autonomy of experi-
enced front-line operators to “circumvent” certain 
bureaucratic procedures is one way high reliability 
organizations maintain system safety.25

While these two schools of thought are helpful for 
understanding how software affects military acci-

dents, their focus is on unpredictable interactions or 
operator inadequacies that trip up software systems 
after they are in operation. Less attention is paid 
to the system acquisition and development phases 
before militaries even field these technologies. Yet, 
software safety specialists have identified that the 
bulk of safety-critical decisions are made during the 
initial phase of software design and requirements 
specification. Based on one study of military aviation 
mishaps, the concept development step accounts 
for 70 to 90 percent of safety-relevant decisions.26

Without accounting for military software acquisi-
tion and development, any explanation of accidents 
in software-intensive military systems is incomplete. 
In these early stages of system design, heavy reliance 
on contractors entails additional communication 
steps between software programmers and operators 
of deployed systems. Drawing on Nancy Leveson’s 
seminal work on software-linked accidents, one re-
view of decades of research on this subject concludes, 
“The source of most serious problems with soft-
ware relates to outsourcing software development.”27 
Regarding military accidents, the strength of these 
feedback channels between operators and software 
developers is crucial because they link military and 
civilian organizations that adhere to very different 
standards on system performance and reliability. 

This third approach, which I call software devel-
opment lifecycle theory, highlights the impact of 
software acquisition patterns on the development 
of accident-prone systems. Military software devel-

26  Nancy G. Leveson, Engineering a Safer World (Cambridge, MA: The MIT Press, 2012), 51; F.R. Frola and C.O. Miller, “System Safety in Aircraft 
Acquisition” (Washington, DC: Logistics Management Institute, January 1984).

27  Roel I.J. Dobbe, “System Safety and Artificial Intelligence,” in The Oxford Handbook of AI Governance, ed. Justin B. Bullock et al. (Oxford: 
Oxford University Press, 2022), https://doi.org/10.1093/oxfordhb/9780197579329.013.67. Spanning engineering, risk assessment, and science and 
technology studies, scholars from a wide range of disciplines have studied how to safeguard software-based systems over the past few decades. 
See also Madeleine Clare Elish, “Moral Crumple Zones: Cautionary Tales in Human-Robot Interaction,” Engaging Science, Technology, and Society 5 
(March 23, 2019): 40–60, https://doi.org/10.17351/ests2019.260.

28  John K. Hawley, “Patriot Wars: Automation and the Patriot Air and Missile Defense System,” Center for a New American Security, January 25, 
2017, https://www.cnas.org/publications/reports/patriot-wars. See also Scharre, “Debunking the AI Arms Race Theory.”

29  National Research Council, Achieving Effective Acquisition of Information Technology in the Department of Defense (Washington, DC: Nation-
al Academies Press, 2010), https://doi.org/10.17226/12823. Related to the waterfall model, the DOD has historically relied on block development, 
in which each development phase is completed once according to unchanging software requirements established at the outset (cf. literature on 
evolutionary acquisition). David N. Ford and John Dillard, “Modeling the Performance and Risks of Evolutionary Acquisition,” Defense AR Journal 16, 
no. 2 (2009): 143. I thank Jackie Schneider for her insights on this topic.

30  Interview with John K. Hawley, May 9, 2022.

opment typically follows a linear “waterfall model,” 
which begins with system requirements specification 
and then progresses sequentially through system 
design, development, testing, and deployment. Within 
this process, evaluation and feedback from operators 
are limited to the late stages of development, by 
which time it is difficult to rework system concepts.28 
As a 2010 National Research Council report notes, 
the Defense Department’s acquisition practices for 
information technology are hampered by a “serial 
approach to development and testing (the waterfall 
model),” in which “end-user participation often is 
too little and too late.”29 Like water and waterfalls, 
operator input does not flow back up the chain of 
software development.

These limited feedback channels between end-use 
operators and software developers produce more acci-
dent-prone military systems through three interrelated 
pathways (see figure 1). First, the waterfall method 
tends to produce human-machine interaction issues 
such as difficulty accessing critical data and unwieldy 
interface designs. Consider, as an example, one of the 
early interfaces for the Patriot system, which Dr. John K. 
Hawley, an engineering psychologist with the U.S. Army 
Research Laboratory, recalls was an error-prone inter-
face based on his user tests: “An insect could land on 
it even and change the settings.” Yet, the interface was 

not fixed, in part due to the rigid sequential 
software development process established 
by Army senior leaders and the prime con-
tractor Raytheon. As Hawley recounts, “But 
they had already spent all this money on it, 
and so they fielded it. The soldiers are put 
into the position where they have to use it 
whether they like it or not.”30

Therefore, software can “fail” in the 
sense that it does not meet the needs of 
users, even if it passes all the technical 
requirements established in the system 

acquisition phase. Studies by human-computer inter-
action specialists have identified confusing interfaces 
as contributing to inadvertent military launches, 
fratricide, and other safety hazards. For instance, the 
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lack of visual contrasts between button interfaces for 
different settings has caused drone crashes.31 These 
human-machine interaction problems are intensified 
in high-stress scenarios when military operators must 
rapidly interpret data and make decisions.

Second, limited operator involvement in the soft-
ware design process leads to fewer opportunities to 
discover unanticipated vulnerabilities. As the Scud 
missile attack discussed above demonstrates, there 
are some contingencies that could be identified in the 
development process if software developers better 
understood how operators would likely employ a 
system.32 To address this issue, the Department of 
Defense has pushed for agile software engineering 
practices that involve rapid prototyping and early 
engagement with operators.33

Even if operators are sufficiently involved in the 
software development process, they still might not 
be able to anticipate all the scenarios under which 
the system will be used.34 Rebecca Slayton has shown 
that missile defense systems require vastly different 
software settings for field tests versus real-world 
use.35 Regardless, iterative software development 
practices can uncover more potential safety hazards 
than rigid, sequential ones.

Third, waterfall models of software development 
limit the capacity of military organizations and de-
fense contractors to ameliorate issues revealed by the 
testing and deployment process. Unlike the hidden 
vulnerabilities issue discussed above, these safety 

31  Mary L. Cummings, “Automation and Accountability in Decision Support System Interface Design,” Journal of Technology Studies 32, no. 1 
(2006); Thomas B. Sheridan, Humans and Automation: System Design and Research Issues (New York: Wiley, 2002). 

32  Eric Schmitt, “AFTER THE WAR; Army Is Blaming Patriot’s Computer for Failure to Stop the Dhahran Scud,” The New York Times, May 20, 1991, 
https://www.nytimes.com/1991/05/20/world/after-war-army-blaming-patriot-s-computer-for-failure-stop-dhahran-scud.html; Eliot Marshall, “Fatal 
Error: How Patriot Overlooked a Scud,” Science 255, no. 5050 (March 13, 1992): 1347, https://doi.org/10.1126/science.255.5050.1347.

33  Defense Innovation Board, “Software Acquisition and Practices (SWAP) Study,” May 3, 2019, https://innovation.defense.gov/software/.

34  Alan Borning, “Computer System Reliability and Nuclear War,” Communications of the ACM 30, no. 2 (1987): 112–31.

35  Slayton, “The Fallacy of Proven and Adaptable Defense.” These unanticipated contingencies correspond to the novel and unexpected interac-
tions under normal accidents theory.

36  Hawley, “Patriot Wars,” 13.

37  Defense Innovation Board, “Software Acquisition and Practices (SWAP) Study,” viii–ix. I am grateful to an anonymous reviewer for guidance on 
this passage.

risks are known. However, they remain unresolved 
because, at this phase of the software development 
lifecycle when end-use operators point out hazards, 
it is too late, costly, and difficult to rework system 
designs. As one expert on human-machine integra-
tion in military systems notes, “By that time, most 
degrees of freedom for concept reevaluation or design 
changes have been lost.”36

Due to the inherent complexity and adaptability of 
software, the effect of system procurement practices 
on safety is especially salient for software-intensive 
military systems. As the three pathways illustrate, 
military software development presents unique chal-
lenges because it necessitates continuous adaptation 
to unanticipated vulnerabilities as well as end-use 
operator understanding of the system. For hardware 
development, sequential procurement approaches 
may be more suitable for managing safety issues 
since potential vulnerabilities and human-machine 
interaction effects are more predictable.37 

To reinforce this point, consider the differences 
between “smart” and normal (or “dumb”) refrig-
erators. When accounting for hardware failures in 
a normal fridge, manufacturers tend to focus on a 
limited set of physical or chemical mechanisms (e.g., a 
puncture that results in gas leakage). Software-based 
smart fridges, on the other hand, present a wider 
range of failure paths connected to unpredictable 
human-machine interactions (e.g., user forgets to 
connect fridge to new wi-fi system, which causes 

temperature control software to malfunction).
Software development lifecycle theory builds on 

the normal accident and high reliability organization 
approaches, which have broadened our perspective on 
software’s role in military accidents, but also unearths 
overlooked causal factors. Debates between the normal 
accidents and high reliability organizations camps tend 
to concentrate on whether accidents are inevitable 
in complex technological systems.38 Likewise, this 
clash has been adjudicated in military technologies 
by focusing on how military organizations operat-
ed and managed such systems after they had been 
fielded. Software development lifecycle theory brings 
the causal timeline of military accidents back to the 
initial phases of software design and requirements 
specifications. In doing so, it also expands the range 
of actors responsible for military accidents to include 
the defense contractors that build the software. 

The ramifications of software development lifecycle 
theory are present in other contexts where national 
governments rely on contractors to develop tech-
nological systems.39 On the one hand, the Defense 
Department’s efforts to work with non-traditional 
contractors (commercial firms with limited defense 
sales) could mitigate software failure scenarios, as 
these entities have developed significant experience 
with agile methods in large-scale software develop-
ment projects such as a traffic management system.40 
On the other hand, the costs of incorporating oper-
ational feedback on integrating commercial-off-the-
shelf software products in military systems may be 
prohibitive.41 Like the Defense Department’s acqui-
sition process, the National Aeronautics and Space 
Administration’s contracting process has sometimes 
limited the ability of astronauts to provide input on 
safety issues.42 As a result, contractors aggressively 
pursued short-term fixes to avoid significant delays in 
delivery, which created unaddressed safety hazards.

As for the root causes leading militaries to adopt 

38  In Sagan’s words, these discussions center around “conflicting visions about what could be called the degree of perfectibility that is possible 
in complex organizations.” Sagan, The Limits of Safety, 14.

39  These theoretical claims also apply to other militaries. On different models of defense software development in France, the United Kingdom, 
Germany, and China, see Simona R. Soare, Pavneet Singh, and Meia Nouwens, “Software-Defined Defence: Algorithms at War,” The International 
Institute for Strategic Studies, February 2023, https://www.iiss.org/research-paper//2023/02/software-defined-defence.

40  Mary Ann Lapham et al., “Considerations for Using Agile in DoD Acquisition,” Software Engineering Institute, 2010, https://insights.sei.cmu.
edu/documents/2180/2010_004_001_15155.pdf; Michael P. Fischetti, “The Challenges Facing ‘Non-Traditional’ Contractors,” Georgia Tech Contract-
ing Education Academy (blog), April 10, 2020, https://contractingacademy.gatech.edu/2020/04/10/15587/.

41  Nancy G. Leveson, “Using Cots Components in Safety-Critical Systems,” in RTO Meeting on COTS in Defense Applications, 2000, http://sun-
nyday.mit.edu/papers/cots.pdf.

42  Diane Vaughan, “Autonomy, Interdependence, and Social Control: NASA and the Space Shuttle Challenger,” Administrative Science Quarterly 
35, no. 2 (1990): 241, https://doi.org/10.2307/2393390.

43  Peter Dombrowski and Eugene Gholz, Buying Military Transformation: Technological Innovation and the Defense Industry, 1st ed. (New York: 
Columbia University Press, 2006); John A. Alic, “The Origin and Nature of the U.S. ‘Military-Industrial Complex’,” Vulcan 2, no. 1 (2014): 63–97.

44  Eugene Gholz and Harvey M. Sapolsky, “Restructuring the U.S. Defense Industry,” International Security 24, no. 3 (1999): 34–35.

45  Lapham et al., “Considerations for Using Agile in DoD Acquisition”; Daniel E. Schoeni, “Long on Rhetoric, Short on Results: Agile Methods and 
Cyber Acquisitions in the Department of Defense,” Santa Clara High Technology Law Journal 31 (2015): 385.

46  Joachim Blatter and Till Blume, “In Search of Co-Variance, Causal Mechanisms or Congruence? Towards a Plural Understanding of Case Stud-
ies,” Swiss Political Science Review 14, no. 2 (2008): 315–56, https://doi.org/10.1002/j.1662-6370.2008.tb00105.x.

certain patterns of software acquisition, political 
and bureaucratic barriers often hamper transitions 
to iterative software development approaches. To 
maintain key programs and lucrative contracts based 
on waterfall models, the prime defense contractors 
exploit their close ties with politicians and defense 
officials as well as their deep understanding of 
military requirements built up over many years of 
doing business with the government.43 Since more 
agile development might entail losing out to more 
open-minded competitors, there is little incentive 
for long-time defense contractors to abandon the 
waterfall model, as shown by resistance to past ac-
quisition reforms.44 Senior procurement officials, 
who “grew up with” the waterfall approach, may 
not invest in building an acquisition culture that 
supports agile methods.45

Empirics

Illuminating dynamics often overlooked by the two 
dominant approaches of normal accidents and high 
reliability organizations theories, I assess software 
development lifecycle theory across four historical 
case studies: the Vincennes accident, the Patriot 
fratricides, the USS McCain collision, and Kessel Run 
software’s performance in the 2021 Afghanistan evac-
uation. Adopting a process-tracing approach, in each 
of the cases, I evaluate the observable implications 
of software development lifecycle theory, and then 
compare them to those derived from the two more 
established theories (see table 1).46 While the three 
theoretical approaches agree that there is a causal 
relationship between the introduction of software 
and an accident, they offer different interpretations 
of how this process occurs, in particular as it relates 
to principal actors, timing of most relevant decisions, 
precipitating events, and conceptions of software 
failure. The last case, in which the U.S. Air Force 

Figure 1. Causal Graph for Software Development Lifecycle Theory
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experimented with a different approach to software 
acquisition and development, further probes software 
development lifecycle theory by incorporating vari-
ation on the type of software acquisition pathway.

All these accidents are the product of multiple, over-
lapping factors. In many cases, precipitating conditions 
based on all three perspectives are present, making it 
difficult to evaluate their relative explanatory power. In 
addressing this issue, I first analyze whether the evi-
dence matches up with predictions unique to software 
development lifecycle theory, which do not intersect 
with the other mechanisms.47 For instance, if an ac-
cident can be traced to known vulnerabilities rooted 
in software development patterns, which 
neither made the system more complex 
nor could have been addressed by more 
training, then this would constitute strong 
evidence for my argument. Second, I exam-
ine the historical record for evidence that 
components of the software development 
lifecycle mechanism served as antecedent 
conditions for the high reliability organi-
zations and normal accident mechanisms. 
Indications that limited feedback between 
operators and software developers pro-
duced systems that either were highly complex and 
tightly coupled or that constrained the ability of op-
erators to manage safety risks would illustrate the 
value of software development lifecycle theory.

To ensure a rigorous test of software development 
lifecycle theory, I selected cases that are representative 

47  Derek Beach and Rasmus Brun Pedersen, Process-Tracing Methods: Foundations and Guidelines (Ann Arbor: University of Michigan Press, 2013), 100–5.

48  Bode, “Practice-Based and Public-Deliberative Normativity”; Scharre, “Autonomous Weapons and Operational Risk”; Miller et al., “The Navy 
Installed Touch-screen Steering Systems to Save Money.”

49  Scharre, “Autonomous Weapons and Operational Risk.”

50  The three main branches of the U.S. military are represented: the Air Force (Afghanistan evacuation), the Navy (the Vincennes and the 
McCain), and the Army (Patriot fratricides). While the Patriot fratricides involve three friendly fire incidents, if my argument holds, these three epi-
sodes should trace back to software development lifecycle issues that are common to all Patriot systems. Thus, I treat these incidents as one case. 

illustrations of the normal accidents and high relia-
bility organizations models. Analyses of the McCain, 
Vincennes, and Patriot accidents often pinpoint either 
complex software or inadequate operator training as 
key causal factors.48 Paul Scharre, for example, writes, 
“The causes behind the Patriot fratricides illustrate 
how normal accidents also can occur in military sys-
tems.”49 This test’s generalizability is enhanced be-
cause these cases also differ in many ways, including 
their operational context, level of complexity, the 
defense contractor involved, type of safety hazard, as 
well as the relevant military organizations.50

 The focus on software applications in navigation, 
operational planning, and weapons control systems 
— which aid platforms in tracking, targeting, and 
shooting their targets — provides two further ad-
vantages. First, these are reference classes that are 
similar in many relevant aspects to how AI could 

be incorporated into weapons platforms.51 Second, 
compared to those linked to nuclear weapons sys-
tems, command and control issues in these military 
software applications are relatively understudied, and 
they provide a new universe of cases to explore the 
effects of technology on military accidents.52 Thus, 
they provide fertile ground for evaluating whether 
software development lifecycle theory can offer in-
sights not fully captured by the normal accidents or 
high reliability organizations perspectives. 

Lastly, these cases all feature systems in military set-
tings where safety must be balanced against operational 
effectiveness. Lessons learned from software-related 
accidents in the civilian sector where safety consider-
ations are paramount, such as airline transport or air 
traffic control, may not translate. Similarly, in many 
of the military operations studied by high reliability 
organization researchers, such as non-combat aircraft 
operations, safety goals were protected from other 
competing priorities.53 Insights from this article’s cases, 
therefore, enable us to better understand the risks of 
human-software interaction in conflict settings where 
reducing accident risk is especially challenging.

I drew from three additional sources to enrich the 
case study analysis: recently declassified U.S. govern-
ment documents, archived discussions in the Forum 
on Risks to the Public in Computers and Related Sys-
tems,54 and interviews with contractors and military 
officials who developed and tested these systems.55 
Taken together, these sources fill important gaps in the 
official post-accident investigations. Typically staffed 
by military operators who want to avoid implicating 
senior procurement decisionmakers, boards of in-
quiry for military accidents tend to avoid investigating 
the system design process.56 Ideally, the scope of the 
analysis would include non-U.S. cases. However, this 
decision was shaped by practical considerations, in-
cluding access to interviewees and archival records.

51  Perrow, the pioneer of normal accidents theory, also cites software as a neglected area. Perrow, Normal Accidents, 354.

52  Gene I. Rochlin, “Iran Air Flight 655: Complex, Large-Scale Military Systems and the Failure of Control,” in Responding to Large Technical 
Systems: Control or Anticipation, ed. Todd R. LaPorte (Berkeley: University of California Press, 1991), 95–121.

53  Leveson et al., “Moving Beyond Normal Accidents and High Reliability Organizations,” 239.

54  Sponsored by the Association for Computing Machinery, this forum brings together experts to discuss computer-related mishaps.

55  This study was declared exempt by the George Washington University Institutional Review Board under Department of Health and Human 
Services regulatory category 2 (IRB# NCR245704).

56  Interview with C.W. Johnson, author of handbook on military accidents, March 13, 2023.

57  Samuel Cox, “H-020-1: USS Vincennes Tragedy,” July 2018, http://public1.nhhcaws.local/content/history/nhhc/about-us/leadership/director/
directors-corner/h-grams/h-gram-020/h-020-1-uss-vincennes-tragedy--.html.

58  Nick Danby, “How the Downing of Iran Air Flight 655 Still Sparks U.S.-Iran Enmity,” Responsible Statecraft (blog), July 2, 2021, https://respon-
siblestatecraft.org/2021/07/02/how-the-downing-of-iran-air-flight-655-still-influences-us-iran-enmity/.

59  William M. Fogarty, Investigation Report: Formal Investigation into the Circumstances Surrounding the Downing of Iran Air Flight 655 on 3 
July 1988 (Washington, DC: Department of Defense, 1988).

60  R. Jeffrey Smith, “Decision on Vincennes Echoes Precedent,” Washington Post, August 20, 1988, https://www.washingtonpost.com/archive/
politics/1988/08/20/decision-on-vincennes-echoes-precedent/069c5094-670b-42ed-b2ae-d10b904354cb/.

61  Kristen Ann Dotterway, “Systematic Analysis of Complex Dynamic Systems: The Case of the USS Vincennes,” Master’s thesis, Naval Postgrad-
uate School, 1992.

USS Vincennes Shootdown of Iran  
Air Flight 655

On July 3, 1988, the USS Vincennes was passing 
through the Strait of Hormuz, within Iranian territorial 
waters, to investigate reports of Islamic Revolution-
ary Guard Corps speedboats attacking neutral mer-
chant ships. The Vincennes boasted an Aegis system, 
a highly sophisticated combat information center that 
automated functions such as target classification and 
target-weapon pairing.57 That morning, radar operators 
on the Vincennes misidentified an Iranian passen-
ger airliner as an Iranian F-14 Tomcat, and the U.S. 
warship fired two surface-to-air missiles at Iran Air 
flight 655, killing all 290 civilians on board. Before the 
July 2014 MH17 shootdown over Ukraine, it stood as 
the deadliest civilian airliner shootdown in history.58 

How does a billion-dollar warship, equipped with 
state-of-the-art software for tracking and classifying 
aircraft, end up shooting down a civilian passenger 
plane? The official investigation, known as the Fogarty 
report, revealed that the ship’s Aegis system supplied 
accurate data to the Vincennes crew.59 The Aegis 
provided altitude information that the plane was 
ascending (like a commercial plane), not descending 
(like a hostile military plane). The crew, however, 
reported that the aircraft was descending as it ap-
proached the ship.60 There is much to be mined from 
the high-stakes calls made in these critical minutes, 
and the ensuing investigations and Congressional 
hearings identified human error (including stress and 
psychological issues) as the primary cause.61 Yet, it is 
equally, if not more, valuable to trace problems with 
the Aegis further back to the decisions made about 
software design in the initial procurement phase. This 
would also cast attention on the companies that built 
the system, namely the RCA Corporation, which was 

Insights from this article’s cases, 
therefore, enable us to better 

understand the risks of human-
software interaction in conflict 

settings where reducing accident 
risk is especially challenging.

Software development lifecycle High reliability organizations Normal accidents

Principal 
actors

Software developers (contractors) 
and senior procurement officials

Military organizations responsible 
for operating software systems

Military organizations 
responsible for operating 
software systems

Timing 
of most 
relevant 
decisions

Initial contracting phase, software 
requirements specification, 
preceding decade(s)

After the system has been 
fielded (emphasis on continuous 
operations and training)

Combination of system 
design and organizational 
operations after system 
has been fielded

Conception 
of software 
failure

Software development process 
does not incorporate feedback 
from end-users

Operators not adequately trained 
to manage software

Software contributes to 
tight coupling and high 
complexity

Precipitating 
events

Predictable issues that remain 
unaddressed due to software 
development lifecycle

Mistakes that escalate because 
operators fail to maintain system 
safety

Novel and unexpected 
interactions between 
system components

Table 1. Three Perspectives on Software’s Contribution to Military Accidents
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awarded the prime contract for the Aegis in 1969.62 
If software development lifecycle theory holds, 

the case evidence should show that the system de-
velopment process factored into the combat infor-
mation center operators’ struggles with managing 
Aegis-related risks. One of the key issues is whether 
the Aegis’ program managers and RCA gave sufficient 
attention to user interface considerations in tense, 
combat settings. Matt Jaffe, a systems engineer at 
RCA in the mid-1970s, pushed for the Aegis display 
to include a rate-of-change indicator for altitude. 
On debates over this issue, Jaffe recalls, “I wound 
up literally screaming at my boss, ‘You hired me for 
my technical experience and combat experience. If 
you’re not going to listen to me, why don’t you fire 
me?!’”63 Having previously served in the Vietnam 
War on ships equipped with forerunners to the Aegis 
system, Jaffe was one of the few people involved in 
Aegis software development with experience oper-
ating similar systems in high-stress environments. 
Without this rate-of-change indicator, controllers 
had to “compare data taken at different times and 
make the calculation in their heads, on scratch pads, 
or on a calculator — and all this during combat.”64 
This increased the likelihood of misreading whether 
a ship was descending or ascending. 

These issues could be traced back to 
the extent, timing, and influence of feed-
back from military operators to software 
contractors in the system development 
process. The Aegis system was developed 
based on the Department of Defense’s 
“1679A” software standard, which heavily 
relied on the waterfall model and even re-
stricted the ability of designers and users 
to collaborate and revise initial specifica-
tions.65 As Jaffe states, “When Aegis was 
being developed, it was being developed 
with a waterfall (model). … we drew up a 

62  Philip J. Hilts, “Aegis System Has Been Controversial from the Start,” Washington Post, July 7, 1988, https://www.washingtonpost.com/
archive/politics/1988/07/07/aegis-system-has-been-controversial-from-the-start/eb4d2ab1-b3a4-40d0-8496-82b1541d924f/. Through a series of 
acquisitions and sales, beginning with General Electric’s purchase of RCA in 1986, Lockheed Martin has taken over this business line.

63  Interview with Matt Jaffe, March 8, 2023. Jaffe also emphasized that RCA managers provided some valid pushback to this indicator, including: 
the limited display space, risks of information overload, and issues related to the vertical beam width of the radar (which could muddle rate-of-
change calculations). Ultimately, Jaffe’s supervisor claimed that the Navy never requested such an indicator. For Jaffe, the root issue remained that 
the input RCA received from the Navy was from senior officers on the project management team who did not have operational experience with 
these systems.

64  Eric J. Lerner, “Lessons of Flight 655,” Aerospace America 27, no. 4 (1989): 18.

65  Harvey Lyon, “Navy Military Standards for Technical Software Documentation of Embedded Tactical Systems; a Critical Review,” Naval Post-
graduate School, 1985, https://apps.dtic.mil/sti/citations/ADA161238, 13–14, 26–27; National Research Council, “Achieving Effective Acquisition of 
Information Technology in the Department of Defense,” 48.

66  Interview with Matt Jaffe, March 8, 2023.

67  I am very grateful to Shelby Oakley, at the Government Accountability Office, for helping me locate this report. U.S. General Accounting 
Office, “Weapons Testing: Quality of DOD Operational Testing and Reporting,” July 26, 1988, https://www.gao.gov/products/pemd-88-32br.

68  U.S. General Accounting Office, “Weapons Testing.”

69  Ahern, Tim. “Aegis System Got Poor Marks in GAO Report.” Associated Press, July 9, 1988. Regarding these sea trials, a detailed Newsweek 
investigation stated that “the navy could not afford to risk failure in the trials for fear that Congress would stop funding the Aegis program.” John 
Barry and Roger Charles, “Sea of Lies,” Newsweek, July 12, 1992, https://www.newsweek.com/sea-lies-200118.

software requirements specification document, sent 
it to the Navy for review, and then they would come 
back for one meeting of a few hours. It’s hard to do 
human-machine interface that way.”66

Furthermore, many actors had raised concerns that 
Aegis systems proceeded into production without 
adequate attention to testing and operator feedback. 
A General Accounting Office investigation reported a 
“long list of testing limitations” to the Aegis system 
at RCA’s facility in Moorestown, New Jersey, such 
as the on-land location, lack of actual missile firing 
capability, and differences between the tested and 
fielded versions of the system.67 The realism of these 
tests has also been questioned. The test ranges were 
set up such that threats would only come from a 
predictable area. Moreover, certain events, such as 
aircraft leaving the immediate test area, tipped off 
crews that a test event would soon occur. Together, 
these conditions allowed “crews to deduce the gen-
eral direction, timing, and type of the test threats.”68 
Sources familiar with a classified version of the Gen-
eral Accounting Office report confirmed that these 
so-called sea tests did not approximate a realistic, 
challenging combat environment.69 

Unlike many post-incident investigations, this Gen-
eral Accounting Office report — released just three 
weeks after the Vincennes accident — identified 
problems with the Aegis originating from before the 
accident, thus limiting the risk of hindsight bias in 
shaping its conclusions. The report drew on interviews 
done between September 1987 and March 1988. It 
also scrutinized the testing and evaluation processes 
for not just the Aegis but also five other systems.70 

Finally, even accounts that focused on the tactical 
judgements in the final minutes before the accident 
eventually landed on problems stemming from the 
early stages of system development. As noted above, 
Congress and the Navy’s investigations of the Vin-
cennes accident pointed to the problem of “scenario 
fulfillment,” which leads highly trained organizations 
to unconsciously ignore and misinterpret evidence 
that does not conform to a preconceived scenario, 
such as an Iranian air attack.71 Later examinations of 
the Vincennes case have undermined this account, 
arguing that the crew’s mistakes were likely due to a 
combination of information overload and unwieldy 

70  U.S. General Accounting Office, “Weapons Testing”; Eleanor Chelimsky, “Review of the Office of Operational Test and Evaluation: Hearing 
before the Acquisition Policy Panel Committee on Armed Services,” September 14, 1988.

71  Changes in the rules of engagement are another contributing factor. See Sagan, “Rules of Engagement.” Sagan identifies “hair trigger” rules of 
engagement as a “permissive cause” in the Vincennes tragedy.

72  For one of the strongest arguments against the “scenario fulfillment” explanation, see Dotterway, “Systematic Analysis of Complex Dynamic 
Systems.” Nancy C. Roberts and Kristen Ann Dotterway, “The Vincennes Incident: Another Player on the Stage?” Defense Analysis 11, no. 1 (1995): 
31–45.

73  Richard Pew, “On the Subject of the USS Vincennes Downing of Iran Air Flight 655,” September 14, 1988. Emphasis mine.

74  Hilts, “Aegis System Has Been Controversial from the Start.”

user displays, rather than collective bias.72 Moreover, 
some psychologists stressed that operator errors were 
entrenched in the Aegis system design and development 
process. Richard W. Pew, in testimony to a Congres-
sional hearing on the Vincennes accident on behalf of 
the American Psychological Association, stated, “Part 
of the problem is that automation decisions are made 
at the time the fundamental architecture of a system 
is being defined. We need more extensive methods of 
analysis to understand how to integrate human op-
erator performance with system performance during 
the conceptual design state of new weapon systems.”73

What can normal accidents and high reliability 
organizations theories reveal about the Vincennes 
case? At the time, the Aegis was one of the most 
complicated weapons systems in action.74 It could 
also operate at high levels of automation from target 
tracking to missile firing sequences. This type of 
tight coupling was needed to respond to the types 
of threats that Aegis would likely face — the time 
between the appearance of the Iranian aircraft on 
the radar screen and the decision to fire spanned 

Later examinations of the  
Vincennes case have undermined 

this account, arguing that the 
crew’s mistakes were likely due to a 
combination of information overload 

and unwieldy user displays, rather 
than collective bias.
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references to the compression of time or complexity 
of the technological system.86 RCA, the system devel-
oper, is not mentioned even once. Fully understanding 
the causes of the Vincennes tragedy requires looking 
beyond just the organization using the Aegis system 
to Moorestown, New Jersey, where the Missile and 
Surface Radar Division of RCA was located. 

Patriot “Friendly Fire” Incidents 

In 2003, during the Iraq War, the U.S. Army’s Patriot 
air defense system committed three “friendly fire” inci-
dents. In the first episode, which occurred on March 23, 
a Patriot missile shot down a Royal Air Force Tornado 
fighter-bomber, killing both crewmembers. Two days 
later, a Patriot radar locked on to a U.S. Air Force F-16; 
in response, the pilot destroyed the Patriot battery 
with a missile. Fortunately, this confrontation resulted 
in no casualties. About a week later, a Patriot battery 
shot down a U.S. Navy F/A-18C, killing the pilot. These 
three friendly fire incidents comprised 25 percent of 
the Patriot’s 12 engagements in the conflict.87

Problems with how the Patriot system interpreted 
identification friend or foe signals were central to these 
friendly fire incidents. In 2005, a Defense Science Board 

86  Though the formal investigation of the shootdown exonerated Captain Rogers from blame, other accounts highlight that the captain’s aggres-
sive pursuit of Iranian gunboats contributed to the time pressures faced by the Aegis system. David Evans, “Vincennes: A Case Study,” U.S. Naval 
Institute Proceedings 119, no. 8 (August 1993), https://www.usni.org/magazines/proceedings/1993/august/vincennes-case-study.

87  Scharre, Army of None.

88  Defense Science Board Task Force. “Patriot System Performance” (Washington, DC: Department of Defense, 2005).

89  Defense Science Board Task Force.

90  This contract initiated the first phase of software modifications (PAC-1). The PAC-2 software changes, which were the most relevant to Opera-
tion Iraqi Freedom, began in 1986.

91  Hawley, “Patriot Wars.”

92  Interview with John K. Hawley, May 9, 2022.

93  Frank Conahan, “DOD’s Management of Government Property Furnished to Defense Contractors,” June 23, 1983, 9, https://www.gao.gov/
products/t-nsiad-88-19.

94  Hawley, “Patriot Wars.”

task force reviewed the Patriot’s performance in the 
Iraq War and concluded that the identification friend 
or foe technology developed by Raytheon, the system’s 
prime contractor, performed poorly — a problem that 
had surfaced during training exercises.88 This begs the 
question of why this issue was not addressed. The 
task force stated that it “remains puzzled as to why 
this deficiency never garner[ed] enough resolve and 
support to result in a robust fix.”89

Detailed investigations established that the an-
swer to this puzzle lies in the system development 
process, which extends back to at least 1985, the 
year that Raytheon was awarded a Patriot software 
modernization contract.90 According to John Hawley, 
who has over 35 years of expertise on human-ma-
chine interactions in Patriot units, the Department 
of Defense’s systems acquisition process was the 
biggest obstacle to safer Patriot performance in the 
Iraq war. Raytheon followed the waterfall model, 
in which feedback and evaluation were left until 
system development was nearly complete.91 Hawley 
comments, “[The system developers] still have this 

idea that they have this acquisition pro-
cess, and when it’s finished, it’s finished. 
Oftentimes, the user is not equipped to 
use it that way.”92 The General Accounting 
Office diagnosed similar issues in earlier 
cycles of Patriot development, in which 
“the Army believed it necessary to pro-
ceed (with production) even though test 
results identified major problems.”93

This waterfall approach was especially 
ill-suited to Patriot upgrades in identifica-
tion algorithms and automatic operating 
modes, which were brittle and demanded 
military users to intervene in extreme sit-
uations.94 As they made upgrades to the 
Patriot’s software, contractors and concept 
designers built technical components to 

meet certain efficiency and performance requirements, 
leaving operators to deal with the residual impacts 
(e.g., the Patriot’s difficulties with identifying friends 
or foes). Whether operators could meet the associated 

four minutes.75 With this type of system, normal ac-
cidents theory tells us that a Vincennes-like disaster 
was inevitable. If the Vincennes accident was caused 
by novel and unexpected interactions related to the 
Aegis system, that would further support the normal 
accident theory explanation. Based on evidence gath-
ered by Captain Kristen Ann Dotterway, it is possible 
that the Aegis automatically re-assigned the Iranian 
plane’s track number (TN 4474) to a different track 
number (TN 4131) entered by the USS Sides, which 
was operating with the Vincennes at the time.76 Mo-
ments later, when the Vincennes crew asked for an 
update on TN 4474, thinking it was still attached to 
the Iranian plane, the Aegis computer had already 
matched that number to a U.S. Navy aircraft that was 
landing on a U.S. aircraft carrier in the Gulf of Oman. 
By some accounts, this was a “freak occurrence” that 
explains why multiple crew members reported that 
the Iranian aircraft was descending.77 

On the other hand, aspects of this case suggest 
that the breakdowns in information-gathering aboard 
the Vincennes were predictable. Assuming the TN 
4474 re-assignment account holds up, the software 
development process should have addressed the risks 
associated with automatically changing track num-
bers.78 At the very least, the Aegis should have had 
an alert mechanism that notified the operator when 
track numbers had been automatically re-assigned.79 
Dotterway, who originally reconstructed the sequence 
of events in this account, also blames the “poor in-
terface between the Aegis weapon system and the 
operator, especially the procedural complexity and a 
problematic presentation of information illustrated 
in the auto-correlation and subsequent confusion 
of track numbers.”80 Furthermore, another explana-
tion for the “descending” call was that the crew had 
mistaken decreasing range values as altitude values, 
which would connect back to the system development 
issues related to rate-of-change indicator for altitude.81

75  Ingvild Bode and Thomas Watts, “Meaning-Less Human Control: Lessons from Air Defence Systems on Meaningful Human Control for 
the Debate on AWS,” Centre for War Studies (University of South Denmark) and Drone Wars UK, 2021, https://dronewars.net/wp-content/up-
loads/2021/02/DW-Control-WEB.pdf, 44.

76  A track number is the unique label that a radar system assigns to each new possible target.

77  Dirk Maclean, Shoot, Don’t Shoot: Minimizing Risk of Catastrophic Error Through High Consequence Decision-Making, Air Power Development 
Centre, 2017, 29.

78  In fact, these types of risks were well-established, not freak occurrences. Interview with Dr. Nancy Roberts, June 12, 2023.

79  Dotterway, “Systematic Analysis of Complex Dynamic Systems,” 59.

80  Dotterway, 173.

81  Dotterway, 54.

82  Scharre, Army of None.

83  Barry and Charles, “Sea of Lies.”

84  Barry and Charles.

85  Fogarty, Investigation Report.

By highlighting the operators of the Vincennes, the 
high reliability organizations approach also offers 
some insights into this case. According to the theory, 
preventing Aegis-linked accidents comes down to 
whether organizations can cultivate environments in 
which groups can reliably perform in high-pressure 
situations, such as deference to experienced front-
line operators who can independently circumvent 
rules to prevent accidents when issues arise.82 In 
the Vincennes case, the combat information center 
operators had limited experience managing Aegis 
systems in high-stress environments. According to 
a Newsweek investigation, the tactical officer tasked 
with directing the ship’s navigation and weapons 
systems based on data from the combat information 
center “was uncomfortable with computers” and, 
according to one fellow officer, “used his screen as 
a surface for ‘self-stick’ notes” instead of displaying 
potential incoming threats.83

Yet, it is important to not overstate the implications 
of high reliability organizations theory in this case. 
Even the most well-trained and experienced crew 
could have struggled to process Aegis data in combat 
conditions.84 As the evidence above demonstrates, 
the Vincennes’ problems were less about the level 
of training or the ability of operators to learn from 
mistakes and more entrenched in the flaws of the 
software development model. By the time operators 
could train with and test the system, any issues they 
identified could not have been fixed. Thus, the high 
reliability organizations approach disregards the role 
of the contractors who develop Aegis software and 
the robustness of feedback loops between military 
operators and system designers. 

The Department of Defense’s official investigation 
report on the Vincennes incident numbers 153 pages.85 
There are over 70 references to Captain Will Rogers 
III, who commanded the Vincennes; nearly 20 men-
tions of the experience level of operators; and nine 

As they made upgrades to the 
Patriot’s software, contractors 
and concept designers built 
technical components to meet 
certain efficiency and performance 
requirements, leaving operators 
to deal with the residual impacts 
(e.g., the Patriot’s difficulties with 
identifying friends or foes).
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demands was not tested until the end of the waterfall 
software development process, when it was too late to 
change the system’s fundamental design. Hawley and 
Anna L. Mares, another researcher at the U.S. Army 
Research Laboratory, conclude, “The roots of [the 
Patriot’s] apparent human performance shortcomings 
can be traced back to systemic problems resulting from 
decisions made years earlier by concept developers, 
software engineers, procedures developers, testers, 
trainers, and unit commanders.”95

Indeed, even efforts oriented toward identifying 
deficiencies among U.S. Army Patriot operators 
eventually turned to the system acquisition process. 
Following the 2003 fratricides, the Army Research 
Laboratory initiated “the Patriot Vigilance Project,” 
which, as its name suggests, initially aimed to investi-
gate the discipline and alertness of Patriot operators. 
Ultimately, after expanding its scope to cover 20 
years of the Patriot’s evolution, the review warned 
against laying too much blame on operators, instead 
emphasizing deeper system development problems 
like “faulty going-in concepts” that proved “difficult 
and expensive to correct” later in the process.96

How well do the normal accidents and high re-
liability organizations approaches account for the 
Patriot friendly fire accidents? Certainly, the two 
system features of normal accidents were present 
in the Patriot case. To begin, it was difficult for op-
erators to grasp the intricate connections between 
the Patriot system’s moving parts. In the aftermath 
of the incidents, experts scrutinized the Patriot’s 
“enormous complexity,” which had been enhanced 
by software upgrades to enable automated engage-
ment of a target.97 Second, the Patriot system was 
also tightly coupled. There was very little reaction 
time between the initial detection of an incoming 
missile and the decision to respond.98 As the United 
Kingdom Ministry of Defence’s inquiry into the Pa-

95  John K. Hawley and Anna L. Mares, “Human Performance Challenges for the Future Force: Lessons from Patriot after the Second Gulf War,” in 
Designing Soldier Systems: Current Issues in Human Factors, ed. John Martin et al. (London: CRC Press, 2018), 3–34.

96  Hawley, “Patriot Wars.”

97  Charles Piller, “Vaunted Patriot Missile Has a ‘Friendly Fire’ Failing,” Los Angeles Times, April 21, 2003, https://www.latimes.com/archives/la-
xpm-2003-apr-21-war-patriot21-story.html.

98  If the Patriot was operating in auto-fire mode, even less slack was present.

99  Ministry of Defence, “Aircraft Accident to Royal Air Force Tornado GR MK4A ZG710,” March 23, 2003, 3, https://www.gov.uk/government/publi-
cations/military-aircraft-accident-summary-aircraft-accident-to-raf-tornado-gr-mk4a-zg710; cited in Bode and Watts, “Meaning-Less Human Control.”

100  Scharre, Army of None, 144.

101  Theodore A. Postol, “An Informed Guess about Why Patriot Fired upon Friendly Aircraft and Saw Numerous False Missile Targets during 
Operation Iraqi Freedom,” Security Studies Program, Massachusetts Institute of Technology, April 20, 2004; Benjamin S. Lambeth, The Unseen War: 
Allied Air Power and the Takedown of Saddam Hussein (Annapolis, MD: Naval Institute Press, 2013), 245.

102  After the F-16 aircraft shot down the Patriot unit, one pilot remarked, “We had no idea where the Patriots were, and those guys were locking 
us up on a regular basis. No one was hurt when the Patriot was hit, thank God, but from our perspective they’re now down one radar. That’s one 
radar they can’t target us with any more.” Lambeth, The Unseen War, 115.

103  Scharre, Army of None, 144. 

104  Automation bias refers to the phenomenon when operators have “too much” trust in autonomous systems. Bode and Watts, “Meaning-Less 
Human Control”; Horowitz, “When Speed Kills.”

105  Defense Science Board Task Force, “Patriot System Performance.”

triot-Tornado fratricide put it, “The crew had about 
one minute to decide whether to engage.”99

While some aspects of this case bear out the ex-
pectations of normal accidents theory, it misses other 
key contributing factors to the Patriot accidents. The 
observable implications of normal accidents are most 
compatible with the second fratricide involving the 
F/A-18C, in which the Patriot system failed to adapt to 
novel and unexpected interactions.100 In this instance, 
when Patriot radars operated in close proximity and 
followed the same aircraft, their pulses would produce 
false ballistic missile trajectories, or “ghost tracks.”101 
From a normal accidents viewpoint, this situation 
was relatively unpredictable, and it would have been 
difficult to uncover in the development process.

However, other elements of the Patriot accidents 
were more preventable. The “ghost tracks” issue was 
not relevant to the Tornado incident or the U.S. F-16 
engagement on the Patriot. Most of the Patriot’s identi-
fication of friend or foe shortcomings were well-known 
to both system operators and pilots, who feared flying 
in airspace tracked by Patriots due to the frequen-
cy with which the radar systems would lock on to 
their aircraft.102 For example, as Paul Scharre points 
out, the risk that Patriots would mistake aircraft for 
anti-radiation missiles “had been identified during 
operational testing but had not been corrected and 
were not included in operator training.”103

Other factors in this case also illustrate the high 
reliability organizations approach’s utility and draw-
backs. The Patriot crews were relatively inexperi-
enced and overly reliant on automated outputs.104 In 
its investigation of the Patriot fratricides, the Defense 
Science Board task force recommended that opera-
tors gain more autonomy over firing decisions. “The 
solution here will be more operator involvement and 
control in the functioning of a Patriot battery,” the 
task force report states.105 Failing to satisfy critical 

features of a high reliability organization, Patriot 
unit operators tended to lack the know-how needed 
to bypass established practices in order to avoid 
disaster in high-pressure situations.106 

Still, regarding the Patriot accidents, high relia-
bility organizations theory’s explanatory power is 
limited in two ways. First, it is unlikely that even 
more experienced operators would have been able 
to substantially reduce accident risks. The Patriot’s 
identification of friend or foe problems meant that 
operators would have very little time and information 
to override the system’s classifications.107 

Second, the high reliability organizations approach 
neglects the need for operator feedback earlier in the 
system development process. A more iterative develop-
ment process could have alerted designers and contrac-
tors to the need for targeting algorithms that could be 
adapted to the prevailing missile threats that operators 
would encounter in a given operating environment.108 
Instead, the U.S. Army and Raytheon “committed to a 
system concept that demonstrate[d] patterns of per-
formance unreliability,” leaving it to the operators to 
deal with the additional risks.109 In this sense, the focus 
on operator adaptability points toward an 
end-of-pipe solution, whereas the software 
development lifecycle approach controls 
risk from the source. 

The above evidence suggests that the 
Patriot’s safety issues are deeply em-
bedded in the military’s acquisition ap-
proach for software-intensive systems. 
In response to the Patriot fratricides, the 
military implemented software upgrades 
and adjusted human-machine interfaces 
to help operators adapt to new systems. 
Yet, these reforms leave unresolved the underlying 
problems with how the military, in partnership with 
Raytheon and other contractors, acquires and de-
velops systems like the Patriot.

USS McCain and Alnic MC Collision

On Aug. 21, 2017, the U.S. Navy destroyer John S. 
McCain made a sudden turn to port and uninten-
tionally struck the Alnic MC, a Liberian-registered oil 

106  An organization’s learning orientation is another key characteristic of HROs. In this case, there is evidence that the Army did not learn from 
Patriot deficiencies in the first Gulf War. Postol, “Lessons of the Gulf War Experience with Patriot.”

107  Ministry of Defence, “Aircraft Accident to Royal Air Force Tornado GR MK4A ZG710.”

108  Bode and Watts, “Meaning-Less Human Control,” 55.

109  Hawley, “Patriot Wars.”

110  Miller et al., “The Navy Installed Touch-screen Steering Systems to Save Money.”

111  S.C. Mallam, K. Nordby, S.O. Johnsen, and F.B. Bjørneseth, “The Digitalization of Navigation: Examining the Accident and Aftermath of U.S. 
Navy Destroyer John S. McCain,” Proceedings of the Royal Institution of Naval Architects Damaged Ship V, 2020, 57.

112  National Transportation Safety Board, “Collision between U.S. Navy Destroyer John S. McCain and Tanker Alnic MC Singapore Strait, 5 Miles 
Northeast of Horsburgh Lighthouse August 21, 2017,” 2019, https://www.ntsb.gov/investigations/AccidentReports/Reports/MAR1901.pdf, 33.

tanker, off the coast of Singapore and Malaysia, east 
of the Strait of Malacca. About an hour earlier, the 
destroyer’s commanding officer, Alfredo J. Sanchez, 
switched the “Integrated Bridge and Navigation Sys-
tem” to backup mode, setting off a series of mistakes 
that caused the hard turn. Ten U.S. Navy sailors 
died because of the collision, making it the Navy’s 
deadliest accident in four decades.110

A number of investigations into the collision point-
ed to design flaws in the McCain’s navigation system 
as playing a major role in the accident. First, in its 
backup mode, the system allowed crew from dif-
ferent parts of the ship to take charge of steering, 
which led to confusion over which station had thrust 
control for different propellers. Second, for steering 
commands, the system only provided touch-screen 
controls, as opposed to mechanical throttles that 
give more tactile feedback to operators.111 As the 
National Transportation Safety Board’s investiga-
tion concludes, “The design of the John S. McCain’s 
touch-screen steering and thrust control system 
increased the likelihood of the operator errors that 
led to the collision.”112

To be sure, issues with the integrated bridge and 
navigation system development process could have 
been partially mitigated by improved decision-making 
on the day of the collision or better training in the 
months before. Ultimately, however, these design 
flaws were rooted in the proclivity of system design-
ers to automate and digitalize navigation functions 
without sufficient attention to the needs of operators. 
According to operators interviewed in the Navy’s 
investigation, they regularly disabled the system’s 
touch screen to avoid accidental rudder changes and 

Ultimately, however, these design 
flaws were rooted in the proclivity 

of system designers to automate 
and digitalize navigation functions 
without sufficient attention to the 

needs of operators.
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ignored fault notifications due to displays that were 
difficult to interpret.113 Notably, efforts to modernize 
the system did not involve consultation with the 
Navy’s own experts on human factors engineering.114 

It was only after the McCain collision that the 
Navy recognized the need for stronger feedback 
loops between operators and software developers. 
Prompted by an internal review, the Navy surveyed 
surface ship crews about the navigation system. 
One striking finding — “the number-one feedback 
from the fleet” according to the program executive 
officer for ships, Rear Adm. Bill Galinis — was that 
operators “overwhelmingly” preferred mechanical 
controls over touch-screen systems.115 The initial 
development of the navigation system lacked this 
type of participatory input, in which end-user per-
spectives are incorporated into the design of new 
technology.116 As Eric Lofgren, an expert on defense 
acquisition, states, “Such an advanced bridge/nav-
igation system should probably first been tried on 
smaller ships with continuous user feedback, tested 
extensively, iterated, then progressively scaled up to 
larger and more complex ships.”117 In line with soft-
ware development lifecycle theory, these problems 
extended back almost a decade of software acquisi-
tion and development to 2008, when the Navy first 
announced a contract with Northrop Grumman to 
build the integrated bridge and navigation system.118

Insights from normal accidents and high reliability 
organizations theories also bear on this case. Regarding 
the former, some of the navigation system’s issues 
stemmed from adding unnecessary complexity, in-
cluding the ability to transfer thrust control for each 
of the ship’s two propellers.119 Moreover, the accident 
happened in one of the world’s most congested wa-
terways, an environment ripe for unexpected inter-
actions in which one misstep could easily lead to a 
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124  National Transportation Safety Board, “Collision between U.S. Navy Destroyer John S. McCain and Tanker Alnic MC Singapore Strait.”

catastrophe.120 Applied to this case, normal accidents 
theory holds that incidents like the McCain collision 
are inevitable as long as the Navy relies on navigation 
systems that are highly complex and tightly coupled.

However, normal accidents theory does not fully 
capture some of the key aspects of the McCain ac-
cident. For starters, not all the design issues with 
the navigation system can be reduced to unexpected 
interactions and insufficient slack between various 
components. For instance, automated bridge sys-
tems equipped with improved indicators and alarms 
should produce looser coupling by giving the crew 
more time to correct issues that arise. Yet, the McCain 
crew ignored these alert systems because the display 
area was densely packed and difficult to interpret 
— the product of not incorporating operator needs 
into the design process.121 Furthermore, many of the 
navigation system’s complications were neither novel 
nor unexpected, as presumed by normal accidents 
theory, but rather predictable. The replacement of 
mechanical throttle with touch-screen controls, for 
example, conflicted with user-centered design prin-
ciples held by the Navy’s own human factors engi-
neering team and Department of Defense standards.122

Some of the lessons from high reliability organiza-
tions also pertain to the McCain case. Forward-de-
ployed naval forces in the Western Pacific faced high 
operational tempo and staffing shortages, which 
resulted in long shifts and inadequate rest.123 This 
affected the crew’s attention to detail and reaction 
time, undermining the ability to take safety measures. 
Indeed, the National Transportation Safety Board’s 
review found that the bridge watchstanders were 
“acutely fatigued at the time of the accident.”124 An-
other critical aspect of high reliability organizations 
is the high experience level of operators. In this case, 
post-accident investigations highlighted that the crew 

lacked sufficient training on the navigation system.125

While high reliability organization theory spotlights 
how the McCain crew could have better managed 
deficiencies in the navigation system, this approach 
does not account for why the system was developed 
to be accident-prone in the first place. In-depth in-
vestigations of the McCain collision called attention 
to poor technical documentation for the system, 
which would have even hampered the ability of a 
highly reliable organization to make safety adapta-
tions.126 In part because he could not understand 
some of the system’s automated functions in sea 
trials, the McCain’s commander grew accustomed 
to operating the navigation system in backup mode, 
which removed built-in safeguards.127 Contrary to the 
expectations of high reliability organizations theory, 
which regard the ability of operators to circumvent 
certain procedures as a benefit to system safety, in 
this case, such a move enhanced the risk of accidents.

Following the accident, the Navy dismissed the 
ship’s top officers for failing to properly manage 
the navigation system in the critical minutes before 
the collision, while the organizations and officials 
responsible for software development were not held 
accountable. In August 2019, the Navy announced that 
it would continue to work with Northrop Grumman 
to develop more basic touch-screen controls and add 
physical throttles to the system. Yet, there has been no 
evidence that this redesign process will incorporate 
input from end-users.128 As the software development 
lifecycle approach suggests, without this fundamental 
change in the connections between the organizations 
that procure and develop the software, accidents like 
the McCain collision will continue to occur.
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Kessel Run Software and the  
Afghanistan Withdrawal

Amid the Taliban’s swift takeover of Afghanistan in 
August 2021, the United States and its allies and partners 
scrambled to evacuate foreign citizens and some Afghan 
citizens from the country before the Biden adminis-
tration’s planned withdrawal deadline of Aug. 31.129 To 
manage the complicated evacuation process from the 
Hamid Karzai International Airport in Kabul — in all, 
more than 120,000 people were flown out — the U.S. 
Air Force relied on a software tool to plan out the exact 
time slots for arrivals and departures.130 Developed by 
Kessel Run, the Air Force’s own software factory, the 
planning software played a major role in the largest 
noncombatant evacuation in U.S. military history.131 Lt. 
Gen. Greg Guillot, who led the mission as the Air Forces 
Central commander, stated that Kessel Run’s software 
“served as a reliable, adaptable tool as we planned and 
executed this complex, historic operation.”132 

What accounts for the safe and reliable perfor-
mance of Kessel Run’s software in the Afghanistan 
evacuation? This outcome cannot be fully anticipated 
by the high reliability organizations and normal ac-
cidents frameworks. The operation, a chaotic 17-day 
sprint that required an immense surge of Air Force 
aircraft and crew, could not benefit from the contin-
uous learning existent in high reliability organiza-
tions.133 In addition, the evacuation’s complexity had 
increased the number of missions beyond the point 
that the software was designed to accommodate. The 
compressed timeline meant that on-the-fly patches 
were required to deal with software outages.134 

In line with the expectations of software develop-
ment lifecycle theory, Kessel Run’s software devel-
opment model was critical to the airlift planning sys-
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tem’s ability to limit the risk of accidents. Accounting 
for this outcome necessitates an understanding of 
Kessel Run’s iterative software engineering process, 
under which planning tools like the one used in the 
evacuation were developed around cycles of exper-
imentation with significant user feedback and test-
ing.135 This approach starkly differs from the software 
modernization effort that Kessel Run replaced, the 
“AOC 10.2” program initially awarded to Lockheed 
Martin in 2006, which had limited engagement with 
end-users even a decade after software requirements 
were established.136

The importance of this adaptable approach was 
validated by Kessel Run’s response to a software 
outage, prompted by the planning tool’s intermittent 
loading issues as it struggled to accommodate the ex-
ponential growth in the number of flights demanded 
by the evacuation. During the mission, the U.S. mili-
tary planned and directed 2,627 flights. At one point, 
half of the Air Force’s C-17 transport planes were 
dedicated to the effort.137 In the span of 12 hours, the 
Kessel Run team implemented a number of technical 
fixes that incorporated feedback from end-users in 
the air operations center.138 According to one Kessel 
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Run engineer, this adaptation was suc-
cessful because the team could “dry-run 
the changes they were making in a sort of 
digital staging area, while liaison officers 
— with literally the boots-on-the-ground, 
in some cases — could communicate with 
end users to fully realize their immediate 
needs.”139 As Brian Beachkofski, who led 
Kessel Run during the evacuation, notes, 
if this system was developed with a “big 
bang” release, in which end-users do not 
engage with the software until after the 
big product delivery event, this on-the-
fly technical adaptation would have been 
impossible.140

While the first three case studies serve 
as the main test ground for software de-
velopment lifecycle theory’s expectations 
of how organizational structures for soft-

ware development contribute to military accidents, 
evidence from Kessel Run demonstrates how itera-
tive software development practices can reduce the 
risk of mishaps. Some qualifying factors should be 
considered. Kessel Run’s safety benefits were limited 
to one specific mission, not proven across years of 
operations. Fortunately, this type of long-term analy-
sis may be more feasible in the future, since the U.S. 
military is transitioning major combat systems like 
the Aegis to more continuous software development 
practices.141 In this operation, the consequences of a 
software mishap were different than the three other 
cases examined here because a mishap could have 
resulted in a plane taking off without having aerial 
refueling support, which could have resulted in the 
plane being forced to land in a place that would not 
accept the passengers. For systems where the stakes 
are high, such as nuclear command and control, a 
continuous delivery approach that eschews software 
requirements specification may not be the most ap-
propriate approach.142

Conclusions and Implications for  
Policymakers

The international relations discipline has largely 
spurned the study of accidents, possibly because 
they tend to be seen as random events that cannot be 
explained by general causes.143 In this line of thinking, 
civilian casualties are tragic but inevitable costs of 
warfare; friendly fire incidents are unfortunate, but 
it would be pointless to try to identify their common 
determinants. By contrast, this article maintains that 
a science of accidents is possible.

By centering the system acquisition and develop-
ment process, I have explained and demonstrated how 
software technologies contribute to military accidents. 
When military software development follows a “wa-
terfall” approach, in which input from operators is 
limited to the final stages of testing and deployment, 
many safety hazards will only be revealed after it is 
too late to rework system designs. Under this model of 
software development, the risk of accidents is elevated. 
Conversely, when the software development process 
allows for early feedback from military operators dur-
ing system design and requirements specification, 
confusing interface designs and other human-machine 
interaction problems can be mitigated.

This article makes two main interventions in the 
literature on complex technological systems and 
military accidents. First, studies of military accidents 
have primarily tapped into two wells of organizational 
scholarship, the high reliability organization and 
normal accident approaches, on managing hazardous 
technologies. By focusing on breakdowns in complex 
technologies and military organizations in the critical 
seconds and minutes of a crisis, applications of these 
two theories neglect the processes that occur before 
militaries field technological systems: acquisition 
and development. In extending the causal timeline 
of military accidents beyond decisions made on the 
battlefield to those made decades earlier in software 
design and development, software development life-
cycle theory presents an alternative way to explain 
how software contributes to military accidents.

My aim is not to devalue the contributions of the nor-
mal accident and high reliability organization theories 
to the study of safety in military systems. These two 
approaches have introduced important concepts like 
coupling and complexity, and they have underlined the 
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impact of safety culture and organizational structure 
on accidents.144 They have also broadened the notion 
of software failure, beyond the inability of code to meet 
performance specifications, to encompass problems 
linked to interactions between software systems and 
surrounding structures and organizations. In fact, 
this article demonstrates that the politics of software 
acquisition can both feed into the problem of normal 
accidents and inhibit organizations from achieving 
high reliability. As the case studies illustrated, the 
software development process can be the reason why 
militaries field highly complex, tightly coupled systems 
in the first place. Likewise, limited feedback channels 
between software designers and military operators 
can inhibit the risk mitigation practices characteristic 
of high-reliability organizations.145

Second, for policymakers seeking to reduce the risk of 
accidents involving military AI applications, this article 
points toward reforms to defense software acquisitions 
as one effective pathway to produce safer systems. This 
directly contradicts the notion that the waterfall mod-
el’s top-down nature and strict requirements enhance 
safety, which is a viewpoint held by some Department 
of Defense project managers.146 This article’s historical 
lessons should also amplify calls of other researchers on 
the benefits of agile software development for making 
military systems more resilient to problems that arise 
from human-machine teaming. A 2021 War on the Rocks 
piece, for instance, partly attributed design flaws in the 
U.S. Navy’s littoral combat ship to a waterfall project 
management approach.147

Given the bureaucratic and political forces that often 
resist acquisition reforms, the Defense Department’s 
recent championing of agile software development — 
often framed in the context of improving efficiency, not 
safety — should be treated with skepticism. According 
to a Software Engineering Institute assessment, there 
is a significant mismatch between the department’s 
rhetorical embrace of agile methods and its actual 
adoption of such practices.148 Without interventions 
that account for bureaucratic inertia and prime con-
tractors’ vested interests in maintaining waterfall 
methods, military AI systems may replicate the safety 
risks of past software-intensive systems. 

Indeed, this article puts forward that lessons from 
the development of automation software in older 
military systems can directly apply to managing 
emerging technology risks. Revisiting near–nuclear 

While the first three case studies 
serve as the main test ground for 
software development lifecycle 
theory’s expectations of how 
organizational structures for 
software development contribute 
to military accidents, evidence  
from Kessel Run demonstrates  
how iterative software  
development practices can  
reduce the risk of mishaps.



The Scholar Machine Failing: How Systems Acquisition and Software Development Flaws Contribute to Military Accidents

29 30

confrontations in the Cold War, a 2022 Bulletin of 
the Atomic Scientists essay warned, “Today, arti-
ficial intelligence, and other new technologies, if 
thoughtlessly deployed could increase the risks of 
accidents and miscalculation even further.”149 In these 
discussions, both scholars and policymakers often 
gravitate toward “novel” risks, such as those linked 
to increased speed of decision-making. To be sure, 
there are many ways that AI systems today differ from 
the software of old.150 And, certainly, investigating 
those unique features will uncover useful insights 
into understanding how AI will affect military acci-
dents. At the same time, there is much to be learned 
from historical cases of software-intensive military 
systems. After all, new technologies cannot so easily 
escape deep-rooted problems. 
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